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Abstract. New results are interspersed with questions and suggestions for further

research. The topics considered revolve around the weighted Hardy inequality. In
this paper it is restricted to hyperplanes, considered on a kind of Lebegue space

with non-constant index, modified to include operators of the form
∫ b(x)
0 f(t) dt for

arbitrary b(x) ≥ 0, and looked at as defining a partially ordered class of measures.

0. Introduction, The Weighted Hardy Inequality

All of the questions in this paper depend on or are inspired by the weight charac-
terization for the Hardy inequality. It is appropriate to begin with that well-known
result.

Proposition 0.1. Suppose that 1 < p < ∞, 0 < q < ∞ and µ and ν are non-
negative, regular measures on the interval (a, b) with −∞ ≤ a < b ≤ ∞. Then there
exists a constant C such that(∫ b

a

∣∣∣∣∫ x

a

f(t) dν(t)
∣∣∣∣q dµ(x)

)1/q

≤ C

(∫ b

a

|f(t)|p dν(t)

)1/p

holds for all f ∈ Lpν [a, b] if and only if either
p ≤ q and

sup
a≤y≤b

(∫ y

a

dν

)1/p′
(∫ b

y

dµ

)1/q

<∞, or
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q < p, 1/r = 1/q − 1/p, and∫ b

a

(∫ y

a

dν

)r/p′ (∫ b

y

dµ

)r/p
dµ(y)

1/r

<∞.

Various proofs of Proposition 0.1 in the case that µ and ν are absolutely contin-
uous with respect to Lebesgue measure (weight functions) may be found in [5] and
the references therein. The extension to measures may be found in [7] and [8]. It
is important to point out that the usual form of the weighted Hardy inequality,

(0.1)

(∫ b

a

∣∣∣∣∫ x

a

f(t) dt
∣∣∣∣q u(x)dx

)1/q

≤ C

(∫ b

a

|f(t)|pv(t) dt

)1/p

for non-negative weight functions u and v, can be cast in the form of Proposition
0.1 by replacing f by fv1−p′ in (0.1) and taking dµ(x) = u(x) dx and dν(t) =
v(t)1−p′ dt.

Although we have introduced the Hardy inequality on the interval [a, b] we will
work on [0, 1] for simplicity except in Section 3 where it is simpler to work on [0,∞).
Generally speaking, results on one interval translate readily to any other. As usual
we denote the harmonic conjugate of p by p′ so that 1/p+ 1/p′ = 1. Integrals are
taken to include their endpoints so

∫ b
a
dµ =

∫
[a,b]

dµ and χ
S denotes the function

with value 1 on S and 0 otherwise.

1. Hardy’s Inequality on Hyperplanes

Suppose that 1 < p < ∞ and 0 < q < ∞, let u and v be weights, and set
w = v1−p′ . Fix a function m ∈ Lp′w (0, 1) ≡ Lp′w and set

Hm = {h ∈ Lpv :
∫ 1

0

hm = 0}.

Question 1.1. What conditions on p, q, u, and v are necessary and sufficient for
there to exist a constant C such that

(1.1)
(∫ 1

0

∣∣∣∣∫ x

0

f(t) dt
∣∣∣∣q u(x) dx

)1/q

≤ C
(∫ 1

0

|f(t)|pv(t) dt
)1/p

for all f ∈ Hm?

The case m = 0 is the weighted Hardy inequality of Proposition 0.1 because
H0 = Lpv. If m is not trivial then Hm is genuinely a hyperplane in Lpv. Note that
multiplying m by a non-zero constant has no effect on Hm. The case m ≡ 1 (or
any non-zero constant) was solved by P. Gurka (see [5, Chap. 1, Sect. 8]) for
1 < p ≤ q < ∞ and in [4] for all p and q. With the aid of the following lemma
we will be able to answer Question 1.1 in the case that both {x : m(x) > 0} and
{x : m(x) < 0} are of positive measure.
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Lemma 1.2. If T is a non-negative, linear operator that satisfies

‖Th‖Lqu ≤ C0‖h‖Lpv , h ∈ H,
for some C0 then

‖Tg‖Lqu ≤ C1‖g‖Lpv , g ∈ Lpv,
where

C1 = C0(1 + ‖m‖
Lp
′
w
/min(‖mχm>0‖Lp′w , ‖m

χ
m<0‖Lp′w )).

(Recall that w = v1−p′ .)

Proof. If ‖mχm>0‖p′,w = 0 or ‖mχm<0‖p′,w = 0 then C1 = ∞ and the conclusion
holds trivially. Otherwise, fix g ∈ Lpv and define h by

h =|g|+
(∫ 1

0

|g|m
)
χ
m<0|m|p

′−1w

/∫
m<0

|m|p
′
w if

∫ 1

0

|g|m ≥ 0, and

h =|g| −
(∫ 1

0

|g|m
)
χ
m>0|m|p

′−1w

/∫
m>0

|m|p
′
w if

∫ 1

0

|g|m < 0.

In either case we clearly have h ≥ |g| ≥ g.
If
∫ 1

0
|g|m ≥ 0 then∫ 1

0

hm =
∫ 1

0

|g|m+
(∫ 1

0

|g|m
)∫

m<0

|m|p
′−1mw

/∫
m<0

|m|p
′
w = 0

and if
∫ 1

0
|g|m < 0 then∫ 1

0

hm =
∫ 1

0

|g|m−
(∫ 1

0

|g|m
)∫

m>0

|m|p
′−1mw

/∫
m>0

|m|p
′
w = 0

so in either case h ∈ H.
Since T is a non-negative operator and g ≤ h we have

‖Tg‖Lqu ≤ ‖Th‖Lqu ≤ C0‖h‖Lpv
so we may complete the proof by estimating ‖h‖Lpv . If

∫ 1

0
|g|m ≥ 0 then

‖h‖Lpv ≤ ‖g‖Lpv +
(∫ 1

0

|g|m
)
‖mp′−1χ

m<0‖Lpv

/∫
m<0

|m|p
′
w

= ‖g‖Lpv +
(∫ 1

0

|g|m
)
/‖mχm<0‖Lp′w

≤ ‖g‖Lpv + ‖g‖Lpv‖m‖Lp′w /‖m
χ
m<0‖Lp′w .

Similarly, if
∫ 1

0
|g|m < 0 then

‖h‖Lpv ≤ ‖g‖Lpv + ‖g‖Lpv‖m‖Lp′w /‖m
χ
m>0‖Lp′w .

The conclusion follows.

Corollary 1.3. Suppose that both {x : m(x) > 0} and {x : m(x) < 0} have positive
w-measure. If there exists a finite constant C such that (1.1) holds for all f ∈ Hm

then there exists a (different) finite constant C such that (1.1) holds for all f ∈ Lpv.
In particular, Question 1.1 reduces to the usual Hardy inequality (0.1).
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2. Non-Constant Indices

Let p, q, u, and v be non-negative, measurable functions and consider the in-
equality

(2.1)
∫ 1

0

∣∣∣∣∫ x

0

f(t) dt
∣∣∣∣q(x)

u(x) dx ≤ C
∫ 1

0

|f(t)|p(t)v(t) dt.

If p and q are constant functions and take the same value then (2.1) reduces
to the familiar weighted Hardy inequality. The theorem which follows shows that
(2.1) never holds otherwise.

Definition 2.1. Suppose that (X,µ) and (T, ν) are σ-finite measure spaces. A
µ× ν-measurable function k(x, t) is called a proper kernel on X × T provided that
if X0 and X1 are disjoint µ-measurable subsets of X and T0 and T1 are disjoint
ν-measurable subsets of T such that

k(x, t) = k(x, t) (χX0×T0(x, t) + χ
X1×T1(x, t))

then either µ(X0) = ν(T0) = 0 or µ(X1) = ν(T1) = 0.

Theorem 2.2. Suppose that (X,µ) and (T, ν) are σ-finite measure spaces and
k(x, t) is a proper kernel on X × T . Let p(t) and q(x) be non-negative, measurable
functions on T and X respectively. If there exists a constant C such that

(2.2)
∫
X

(∫
T

k(x, t)f(t) dν(t)
)q(x)

dµ(x) ≤ C
∫
T

f(t)p(t) dν(t)

holds for all non-negative ν-measurable functions f then p(t) is constant ν-almost
everywhere, q(x) is constant µ-almost everywhere, and the two functions take the
same value.

Proof. Since (T, ν) is a σ-finite measure space there exists a positive function ϕ
such that

∫
T
ϕ(t) dν(t) <∞. Fix such a function ϕ. For each λ > 0 set

T0(λ) = {t : p(t) < λ}, X1(λ) = {x : q(x) ≥ λ}, and fλ(t) = ϕ(t)1/p(t)χ
T0(λ)(t).

For any m ≥ 1 we have

∫
X1(λ)

(∫
T0(λ)

k(x, t)fλ(t) dν(t)

)q(x)

dµ(x)(2.3)

≤m−λ
∫
X

(∫
T

k(x, t)mfλ(t) dν(t)
)q(x)

dµ(x)

≤m−λC
∫
T

(mfλ(t))p(t) dν(t)

=C
∫
T0(λ)

mp(t)−λϕ(t) dν(t).
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For t ∈ T0(λ), mp(t)−λ → 0 as m→∞ so, by the Dominated Convergence Theorem,
the last integral tends to zero as m→∞. It follows that the integral (2.3) is zero.
Since fλ(t) > 0 for t ∈ T0(λ) we see that k(x, t) = 0 µ × ν-almost everywhere on
X1(λ)× T0(λ).

This time we set

T1(λ) = {t : p(t) > λ}, X0(λ) = {x : q(x) < λ}, and gλ(t) = ϕ(t)1/p(t)χ
T1(λ)(t).

For any m ≤ 1 we have∫
X0(λ)

(∫
T1(λ)

k(x, t)gλ(t) dν(t)

)q(x)

dµ(x)(2.4)

≤m−λ
∫
X

(∫
T

k(x, t)mgλ(t) dν(t)
)q(x)

dµ(x)

≤m−λC
∫
T

(mgλ(t))p(t) dν(t)

=C
∫
T1(λ)

mp(t)−λϕ(t) dν(t).

For t ∈ T1(λ), mp(t)−λ → 0 as m→ 0 so, by the Dominated Convergence Theorem,
the last integral tends to zero as m → 0. It follows that the integral (2.4) is zero.
Since gλ(t) > 0 for t ∈ T1(λ) we see that k(x, t) = 0 µ × ν-almost everywhere on
X0(λ)× T1(λ).

If p(t) is not constant as a ν-measurable function then we can find a λ̄ > 0 such
that ν(T0(λ̄)) > 0 and ν(T1(λ̄)) > 0. Moreover, using σ-finiteness again, we can
choose such a λ̄ satisfying ν({t : p(t) = λ̄}) = 0. Since k(x, t) is zero µ× ν-almost
everywhere on X1(λ̄)× T0(λ̄) and on X0(λ̄)× T1(λ̄) we have

k(x, t) = k(x, t)
(
χ
X0(λ̄)×T0(λ̄)(x, t) + χ

X1(λ̄)×T1(λ̄)(x, t)
)

contradicting our hypothesis that k(x, t) is a proper kernel on X × T . Thus p(t) is
constant ν-almost everywhere. We denote its constant value by p.

If λ > p then T0(λ) has full ν-measure in T and, since k(x, t) is zero µ×ν-almost
everywhere on X1(λ)× T0(λ) we see that

k(x, t) = k(x, t)
(
χ
X0(λ)×T0(λ)(x, t) + χ

X1(λ)×T1(λ)(x, t)
)
.

Since k(x, t) is proper we have µ(X1(λ)) = 0 so q(x) < λ µ-almost everywhere. As
λ→ p+ we see that q(x) ≥ p µ-almost everywhere.

If λ < p then T1(λ) has full ν-measure in T and, since k(x, t) is zero µ×ν-almost
everywhere on X0(λ)× T1(λ) we see that

k(x, t) = k(x, t)
(
χ
X0(λ)×T0(λ)(x, t) + χ

X1(λ)×T1(λ)(x, t)
)
.

Since k(x, t) is proper we have µ(X0(λ)) = 0 so q(x) ≤ λ µ-almost everywhere.
As λ → p− we see that q(x) ≤ p µ-almost everywhere. Thus q(x) = p µ-almost
everywhere, completing the proof.
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Corollary 2.3. If there exists a constant C such that (2.1) holds for all non-
negative f then there exists b ∈ [0, 1] such that v(t) > 0 for almost every t < b and
u(x) = 0 for almost every x > b, and p(t) and q(x) take the same constant value
almost everywhere for t ∈ (0, b) and x ∈ (0, b) ∩ {u 6= 0}.

Proof. Define b to be the essential infimum in [0, 1] of the set {b̄ : u(x) = 0 al-
most everywhere on (b̄, 1)}. Since (2.1) holds it is easy to see that u = 0 almost
everywhere on the interval

(ess inf{t : v(t) = 0}, 1)

so v(t) > 0 for almost every t < b. To complete the proof we observe that χ(0,x)(t)
is a proper kernel on [(0, b) ∩ {x : u(x) 6= 0}]× (0, b) and apply Theorem 2.2.

The reason for the failure of (2.1) for non-constant p and q is evident from the
proof of Theorem 2.1—homogeneity fails in a disastrous way. There is, however, a
standard way to restore lost homogeneity. Set

‖f‖p(t),v(t) = inf{η > 0 :
∫ ∞

0

|f(t)/η|p(t)v(t) dt ≤ 1}.

Question 2.4. Set If(x) =
∫ x

0
f(t) dt and consider the inequality

(2.5) ‖If‖q(x),u(x) ≤ C‖f‖p(t),v(t).

Does there exist pair of functions p(t) and q(x), not both constant, and a constant
C such that (2.5) holds for all non-negative f? For which p(t) and q(x) does such
a C exist?

3. More General Limits of Integration

In [3] and [1] the operator

(3.1)
∫ b(x)

a(x)

f(t) dt

is studied, where a and b are non-decreasing functions with a(x) ≤ b(x). The results
in [3] are for increasing, differentiable a and b and include necessary and sufficient
conditions for the boundedness of the operator from Lpv(0,∞) to Lqu(0,∞) for 1 <
p <∞ and 0 < q <∞ while the results of [1] are for all a and b described above and
include necessary and sufficient conditions for the operator and related operators
to be bounded between pairs of Banach function spaces satisfying Berezhnoi’s `-
condition. Such pairs include (Lpv(0,∞), Lqu(0,∞)) for 1 < p ≤ q < ∞ but not for
0 < q < p, 1 < p <∞.

Question 3.1. Can the monotonicity restriction on a and b be removed?

This question seems to be a difficult one but we are able to characterize the
boundedness from Lpv(0,∞) to Lqu(0,∞) for 1 < p < ∞ and 0 < q < ∞ of the
operator (3.1) with a = 0 and b non-negative and measurable.
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Theorem 3.2. Suppose b is a non-negative, measurable function, 0 < q < ∞,
1 < p < ∞, and u and v are weights. Suppose also that either q > 1 or v1−p′ is
locally integrable on [0,∞). Then

(3.2)

(∫ ∞
0

(∫ b(x)

0

f(t) dt

)q
u(x) dx

)1/q

≤ C
(∫ ∞

0

f(t)pv(t) dt
)1/p

holds for all non-negative functions f if and only if
either p ≤ q and

sup
y>0

(∫ y

0

v1−p′
)1/p′

(∫
{x:b(x)≥y}

u(x) dx

)1/q

<∞,

or q < p, 1/r = 1/q − 1/p, and

∫ ∞
0

(∫
{x:b(x)≥y}

u(x) dx

)r/q (∫ y

0

v1−p′
)r/q′

v(y)1−p′ dy

1/r

<∞.

Before we prove Theorem 3.2 we need the following lemma.

Lemma 3.3. Let b be a non-negative, measurable function, u be a non-negative,
integrable function, and q > 0. Then there exists a regular Borel measure µ on
(0,∞) such that

(3.3)
∫ ∞
y

dµ =
∫
{x:b(x)≥y}

u(x) dx

and ∫ ∞
0

(∫ b(x)

0

f(t) dt

)q
u(x) dx =

∫ ∞
0

(∫ z

0

f(t) dt
)q

dµ(z)

for all non-negative functions f .

Proof. Since u is integrable, the expression
∫
{x:b(x)≥y} u(x) dx is a non-negative,

non-increasing function of y which tends to zero as y tends to infinity. Using [6,
Theorem 12, page 262] we see that there exists a finite Borel measure µ satisfying
(3.3). Following the construction in the book it is an exercise to show that µ is



8 GORD SINNAMON

regular. To complete the proof we calculate as follows:∫ ∞
0

(∫ b(x)

0

f(t) dt

)q
u(x) dx

=
∫ ∞

0

∫ b(x)

0

q

(∫ t

0

f(s) ds
)q−1

f(t) dt u(x) dx

=
∫ ∞

0

∫ ∞
0

q

(∫ t

0

f(s) ds
)q−1

f(t)u(x)χ(0,b(x))(t) dx dt

=
∫ ∞

0

q

(∫ t

0

f(s) ds
)q−1

f(t)
∫
{x:t≤b(x)}

u(x) dx dt

=
∫ ∞

0

q

(∫ t

0

f(s) ds
)q−1

f(t)
∫ ∞
t

dµ(z) dt

=
∫ ∞

0

∫ z

0

q

(∫ t

0

f(s) ds
)q−1

f(t) dt dµ(z)

=
∫ ∞

0

(∫ z

0

f(t) dt
)q

dµ(z).

Proof of Theorem 3.2. It is enough to establish the claim in the case that u is
integrable since the general result then follows using the Monotone Convergence
Theorem. If µ is the regular Borel measure given by Lemma 3.3, inequality (3.2)
becomes (∫ ∞

0

(∫ z

0

f(t) dt
)q

dµ(z)
)1/q

≤ C
(∫ ∞

0

f(t)pv(t) dt
)1/p

.

Using Proposition 0.1 and the remark on page 93 in [9] we see that this inequality
holds if and only if

either p ≤ q and

sup
y>0

(∫ y

0

v1−p′
)1/p′ (∫ ∞

y

dµ

)1/q

<∞,

or q < p, 1/r = 1/q − 1/p, and(∫ ∞
0

(∫ ∞
y

dµ

)r/q (∫ y

0

v1−p′
)r/q′

v(y)1−p′ dy

)1/r

<∞.

Replacing µ by u according to (3.3) completes the proof.

If a and b are similarly ordered in the sense of [2, page 43] the argument of
Theorem 3.2 should extend to the operator (3.1). If not then Question 3.1 is quite
a different sort of problem than the Hardy operator because the sections of the
kernel are no longer a totally ordered set.



FOUR QUESTIONS RELATED TO HARDY’S INEQUALITY 9

4. The Higher Order Hardy Inequality with One Weight Fixed

We look at the inequality

(4.1)
(∫ 1

0

(∫ x

0

(x− t)kf(t) dt
)q

dµ(x)
)1/q

≤ C
(∫ 1

0

f(t)pv(t) dt
)1/p

,

for a fixed weight v. Here k is a non-negative integer, 1 < p <∞, and 0 < q <∞.
The weights for which (4.1) holds have been characterized, see [10].

Let Wk denote the collection of those non-negative, regular measures µ for which
there exists a constant C such that (4.1) holds for all non-negative f .

Definition 4.1. If µ1 and µ2 are non-negative, regular measures on [0, 1] we say
that µ1 �k µ2 provided∫ 1

y

(y − x)k dµ1(x) ≤
∫ 1

y

(y − x)k dµ2(x)

for all y ∈ [0, 1].

There is a natural connection between the partial order �k and the class Wk.

Lemma 4.2. Suppose 1 < p < ∞, 0 < q < ∞, and 0 ≤ k ≤ q. If µ1 ∈ Wk and
µ2 �k cµ1 for some c > 0 then µ2 ∈Wk.

Proof. It is enough to verify (4.1), with µ replaced by µ2, for continuous functions
f since they are dense in Lpv(0, 1). For a non-negative, continuous function f it is
easy to check that, since q ≥ k,

F (x) =
(∫ x

0

(x− t)kf(t) dt
)q

satisfies

F (j)(x) ≥ 0 for 0 ≤ j ≤ k + 1 and F (j)(0) = 0 for 0 ≤ j ≤ k.

Therefore
F (x) =

∫ x

0

(x− t)kF (k+1)(t)/(k!) dt.

We have(∫ 1

0

F (x) dµ2(x)
)1/q

=
(∫ 1

0

∫ 1

t

(x− t)k dµ2(x)F (k+1)(t)/(k!) dt
)1/q

≤c1/q
(∫ 1

0

∫ 1

t

(x− t)k dµ1(x)F (k+1)(t)/(k!) dt
)1/q

=c1/q
(∫ 1

0

F (x) dµ1(x)
)1/q

≤c1/qC
(∫ 1

0

f(t)pv(t) dt
)1/p

.
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which completes the proof.

In the case p ≤ q the weight class W0 has a largest element (up to constant
multiples) with respect to the partial order �0. In view of Theorem 4.2 this shows
that W0 is completely determined by this maximum element. Moreover, the maxi-
mum measure can be expressed in terms of p, q, and the fixed weight v. Define the
measure ω0 by

dω0(x) = (q/p′)
(∫ x

0

v1−p′
)−1−q/p′

v(x)1−p′ dx+
(∫ 1

0

v1−p′
)−q/p′

dδ1(x).

Here δ1 is the Dirac measure at 1.

Theorem 4.3. Suppose that 1 < p ≤ q <∞. Then µ ∈W0 if and only if µ � cω0

for some c ≥ 0.

Proof. The measure ω0 was defined so that

∫ 1

y

dω0(x) = −
(∫ x

0

v(t)1−p′ dt

)−q/p′ ∣∣∣∣∣
1

y

+
(∫ 1

0

v(t)1−p′ dt

)−q/p′

=
(∫ y

0

v(t)1−p′ dt

)−q/p′
which shows that (∫ 1

y

dω0(x)
)1/q (∫ y

0

v(t)1−p′ dt

)1/p′

= 1.

By Proposition 0.1 the Hardy inequality (4.1) (with k = 0) holds with µ replaced
by ω0. That is, ω0 ∈W0. Theorem 4.2 shows that if µ �0 cω0 for some c ≥ 0 then
µ ∈W0.

To prove the converse we suppose that µ ∈ W0, fix y ∈ (0, 1), and substitute
f(t) = v(t)1−p′χ

(0,y)(t) into (4.1) to see that

(∫ 1

y

(∫ y

0

v(t)1−p′ dt

)q
dµ(x)

)1/q

≤ C
(∫ y

0

v(t)1−p′ dt

)1/p

.

It follows that∫ 1

y

dµ(x) ≤ Cq
(∫ y

0

v(t)1−p′ dt

)−q/p′
= Cq

∫ 1

y

dω0(x)

so that µ �0 C
qω0 as required.
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Question 4.4. Is there a measure ωk such that µ ∈ Wk if and only if µ �k cωk
for some constant c ≥ 0?

We have already answered the question in the case k = 0 and 1 < p ≤ q < ∞
and we can also answer it in the case k = 0 and 0 < q < p, 1 < p < ∞. The next
Theorem shows that if q < p then W0 has no maximal element.

Theorem 4.5. Suppose that 0 < q < p, 1 < p <∞ and that either q > 1 or v1−p′

is locally integrable. If µ ∈ W0 then there exists a measure µ+ ∈ W0 such that
µ+ 6�0 cµ for any constant c ≥ 0.

Proof. Proposition 0.1 and the remark on page 93 of [9] shows that (4.1) holds if
and only if

(∫ 1

0

(∫ 1

y

dµ

)r/q (∫ y

0

v1−p′
)r/q′

v(y)1−p′ dy

)1/r

<∞,

where r is defined by 1/r = 1/q − 1/p. If we set V (y) =
(∫ y

a
v1−p′

)r/q′
v(y)1−p′

then we see that µ ∈W0 if and only if
∫ 1

0

(∫ 1

y
dµ
)r/q

V (y) dy <∞.

Fix a measure µ ∈ W0. Our object is to construct a measure µ+ such that∫ 1

0

(∫ 1

y
dµ+

)r/q
V (y) dy <∞ and

∫ 1

y
dµ+/

∫ 1

y
dµ is an unbounded function of y.

Set F (y) =
(∫ 1

y
dµ
)r/q

. Since V (y) dy is non-atomic we can choose a decreasing

sequence y0 = 1, y1, y2, . . . , converging to 0, such that
∫ yk

0
FV = 2−k

∫ 1

0
FV . Now

let h be the function whose graph is the polygonal path connecting the points (yk, k).
Clearly, h is a continuous, non-increasing function on (0, 1). Since (hF )q/r is non-
decreasing there exists a Borel measure µ+ satisfying

∫ 1

y
dµ+ = (h(y)F (y))q/r for

almost every y. Because h is unbounded it is clear that µ+ 6�0 µ and for the other
requirement we estimate as follows.

∫ 1

0

(∫ 1

y

dµ+

)r/q
V (y) dy =

∫ 1

0

hFV ≤
∞∑
k=1

k

∫ yk−1

yk

FV =
∞∑
k=1

k2−k
∫ 1

0

FV <∞.

This completes the proof.
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