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Section 1: Introduction.

Suppose λ is a regular, Borel measure on R and suppose that λ(−∞, x) < ∞ for
all x ∈ R. The Lebesgue spaces, Lpλ, for 1 ≤ p ≤ ∞ will then contain non-trivial,
non-increasing functions. Define

‖f‖p ↓λ = sup
{∫ ∞
−∞
|f |g dλ : g ≥ 0, g non-increasing, ‖g‖p′,λ ≤ 1

}
where p′ is defined by 1/p+ 1/p′ = 1.

The norm ‖·‖p ↓λ was utilized in the early 1950’s by Halperin [2] and Lorentz [3] and
more recently, in proving weighted norm inequalities, by Sinnamon [5], Neugebauer [4],
Stepanov [7] and others. Halperin showed, in the case of λ absolutely continuous, that
to each non-negative function f there corresponds a function fo which is non-increasing
and satisfies ‖f‖p ↓λ = ‖fo‖p,λ. He called (a variant of) this function fo, the level
function of f . In [6] this contruction is extended to regular, Borel measures and the
dual of the Banach space Lp ↓λ is characterised for 1 ≤ p < ∞. The dual space is the
space Lp

′ ∗
λ , with norm ‖f‖p′ ∗λ = ‖f̄‖p′,λ where

f̄(x) = ess supy≥x|f(y)|.

In this paper the above duality result is used to show that interpolation between
the spaces Lp ↓λ , 1 ≤ p <∞, again yields the spaces Lp ↓λ .

We conclude this section with some definitions and notation. The main results of
the paper are contained in Section 2.

Let f be a λ-measurable function. The distribution function of f with respect to
the measure λ is mf (α) = λ{x : |f(x)| > α}. The non-increasing rearrangement of
f is f∗(t) = inf{α : mf (α) ≤ t}, t > 0. The following simple facts follow directly
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from the definitions. 1. mf (f∗(t)) ≤ t. 2. f∗(mf (α)) ≤ α. 3. f∗(0) = ‖f‖∞,λ. 4. If
|f | ≤ |f0|+ |f1| and 0 < ε < 1 then f∗(s) ≤ f∗0 ((1− ε)s) + f∗1 (εs).

If 1 ≤ p < ∞, Lpλ is the space of all λ-measurable functions for which the norm
‖f‖p,λ = (

∫∞
−∞ |f |

p dλ)1/p is finite. L∞λ is the space of all essentially bounded functions.
The norm on the space is ‖f‖∞,λ = ess sup|f |.

Reference is made to several specific theorems in [1]. That text will also serve as
our basic reference in interpolation theory and in particular we will follow the notation
used there.

Section 2: Main Results.

The interpolation results are first proved in the dual spaces Lp
′ ∗
λ . To do this, a

formula for the K-functional, K(t, f ;L1 ∗
λ , L∞∗λ ), is derived and then the reiteration

theorem and the results of ordinary Lpλ interpolation are applied. The Duality Theorem
for Real Interpolation provides the link to the spaces Lp ↓λ .

We begin with a simple fact.

Lemma 1. L∞∗λ = L∞λ with identical norms.

Proof. Suppose f is λ-measurable. Since f ≤ f̄ almost everywhere we certainly have
‖f‖∞,λ ≤ ‖f̄‖∞,λ = ‖f‖∞∗λ. Conversely, for each x, f̄(x) = ess supy≥x|f(y)| ≤ ‖f‖∞,λ
so ‖f‖∞∗λ = ‖f̄‖∞,λ ≤ ‖f‖∞,λ.

The following theorem gives a formula for the K-functional for the pair (L1 ∗
λ , L∞∗λ ).

Theorem 1. K(t, f ;L1 ∗
λ , L∞∗λ ) =

∫ t
0
f̄
∗(s) ds = K(t, f̄ ;L1

λ, L
∞
λ ).

Proof. Fix a λ-measurable function f and fix t > 0. The second equality above is
from [1, Theorem 5.2.1]. To establish the first we prove inequalities in both directions
beginning with K(t, f, L1 ∗

λ , L∞∗λ ) ≥
∫ t

0
f̄
∗(s) ds.

Suppose f = f0 + f1. Clearly f̄ ≤ f̄0 + f̄1 so for each ε > 0 we have f̄ ∗(s) ≤
f̄0
∗((1− ε)s) + f̄1

∗(εs) and hence∫ t

0

f̄
∗(s) ds ≤

∫ t

0

f̄0
∗((1− ε)s) ds+

∫ t

0

f̄1
∗(εs) ds.

The second integral on the right hand side is dominated by

tf̄1
∗(0) = t‖f̄1‖∞,λ = t‖f1‖∞∗λ.

The first is dominated by∫ ∞
0

f̄0
∗((1− ε)s) ds =

1
1 + ε

∫ ∞
0

f̄0
∗(s) ds =

1
1 + ε

∫ ∞
−∞

f̄0(x) dx =
1

1 + ε
‖f0‖1 ∗λ.
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Letting ε→ 0 we have ∫ t

0

f̄
∗(s) ds ≤ ‖f0‖1 ∗λ + t‖f1‖∞∗λ.

Since K(t, f ;L1 ∗
λ , L∞∗λ ) = inff0+f1=f (‖f0‖1 ∗λ + t‖f1‖∞∗λ) we have the inequality.

To prove the other inequality, that K(t, f, L1 ∗
λ , L∞∗λ ) ≤

∫ t
0
f̄
∗(s) ds, we set a =

f̄
∗(t) and E = {x : |f̄(x)| > a}. Note that λ(E) = mf̄ (a) = mf̄ (f̄ ∗(t)) ≤ t. Also,

if λ(E) ≤ s ≤ t then f̄
∗(t) ≤ f̄

∗(s) ≤ f̄
∗(λ(E)) = f̄

∗(mf̄ (a)) ≤ a = f̄
∗(t) so

f̄
∗(s) = f̄

∗(t). Thus f̄ ∗ is constant on the interval [λ(E), t].
Set f0(x) = max(0, |f(x)|−a)sgn(f(x)). Here sgn(z) = z/|z| if z 6= 0 and sgn(z) = 0

otherwise. f̄0 is related to f̄ in a simple way.

f̄0(x) = ess supy≥x|f0(y)| = ess supy≥x max(0, |f(y)| − a)

= max(0, ess supy≥x|f(y)| − a) = max(0, f̄(x)− a).

The remaining portion of f is bounded by a. Let f1 = f − f0 and we have

|f1(x)| = |f(x)− f0(x)| = |f(x)| −max(0, |f(x)| − a) ≤ a.

Thus ‖f1||∞,λ ≤ a. We can now estimate the K-functional.

K(t, f ;L1 ∗
λ , L∞∗λ ) ≤ ‖f0‖1 ∗λ + t‖f1‖∞∗λ.

The set E, defined earlier, contains the support of f̄0. f̄0 takes the value f̄(x) − a on
E. This fact, together with Lemma 1 shows that the K-functional is dominated by∫ ∞

−∞
f̄0(x) dx+ t‖f1‖∞,λ ≤

∫
E

f̄(x)− a dx+ ta ≤
∫ λ(E)

0

f̄
∗(s)− a ds+ ta.

We now recall that f̄ ∗ takes the value a on the interval [λ(E), t] so the last expression
is just ∫ t

0

f̄
∗(s)− a ds+ ta =

∫ t

0

f̄
∗(s) ds.

This completes the proof.

With the above relation between the K-functionals for (L1 ∗
λ , L∞∗λ ) and (L1

λ, L
∞
λ )

we can prove the following.

Corollary 1. If 1 ≤ p0 < p1 ≤ ∞, 0 < θ < 1, and 1/p = (1 − θ)/p0 + θ/p1 then
(Lp0 ∗

λ , Lp1 ∗
λ )θ,p = Lp ∗λ with equivalent norms.
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Proof.

‖f‖(L1 ∗
λ
,L∞∗
λ

)1/p′,p
=
(∫ ∞

0

(
t−1/p′K(t, f ;L1 ∗

λ , L∞∗λ )
)p
t−1 dt

)1/p

=
(∫ ∞

0

(
t−1/p′K(t, f̄ ;L1

λ, L
∞
λ

)p
t−1 dt

)1/p

= ‖f̄‖(L1
λ
,L∞
λ

)1/p′,p
.

By [1, Theorem 5.2.1] we have (L1
λ, L

∞
λ )1/p′,p = Lpλ with equivalent norms. Therefore

the norm on (L1 ∗
λ , L∞∗λ )1/p′,p is equivalent to ‖f̄‖p,λ = ‖f‖p ∗λ. Using this fact and the

reiteration theorem ([1, Theorem 3.5.3]) we obtain

(Lp0 ∗
λ , Lp1 ∗

λ )θ,p = ((L1 ∗
λ , L∞∗λ ) 1

(p0)′ ,p0
, (L1 ∗

λ , L∞∗λ ) 1
(p1)′ ,p1

)θ,p = (L1 ∗
λ , L∞∗λ )1/p′,p = Lp ∗λ .

with equivalent norms. Here (L1 ∗
λ , L∞∗λ )0,1 is taken to be L1 ∗

λ and (L1 ∗
λ , L∞∗λ )1,∞ is

taken to be L∞∗λ .

Corollary 2. If 1 ≤ p0 < p1 < ∞, 0 < θ < 1, and 1/p = (1 − θ)/p0 + θ/p1 then
(Lp0 ↓

λ , Lp1 ↓
λ )θ,p = Lp ↓λ with equivalent norms.

Proof. As mentioned, the dual space of Lp ↓λ is Lp
′ ∗
λ for 1 ≤ p <∞. Thus, by Corollary

1 and the Duality Theorem for Real Interpolation [1, Theorem 3.7.1],

(Lp ↓λ )′ ≡ Lp
′ ∗
λ = (Lp

′
0 ∗
λ , L

p′1 ∗
λ )θ,p′ ≡ ((Lp0 ↓

λ )′, (Lp1 ↓
λ )′)θ,p′ = (Lp0 ↓

λ , Lp1 ↓
λ )′θ,p

with equivalent norms. Here “≡” indicates the isomorphism f ↔ Lf where Lf (g) =∫
R
fg dλ. Since all the Lp ↓λ spaces for 1 ≤ p < ∞ have a common dense subset, ({f :

f is bounded and supported on (−∞, x] for some x} will do,) it follows that Lp ↓λ =
(Lp0 ↓

λ , Lp1 ↓
λ )θ,p. This completes the proof.
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