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Section 1: Introduction.

Suppose A is a regular, Borel measure on R and suppose that A(—oo,x) < oo for
all z € R. The Lebesgue spaces, L%, for 1 < p < oo will then contain non-trivial,
non-increasing functions. Define

113 =50 { [ 17lgdn: g2 0.9 nowinereasing, s < 1}
— 00
where p’ is defined by 1/p+ 1/p’ = 1.

The norm ||-||, | » was utilized in the early 1950’s by Halperin [2] and Lorentz [3] and
more recently, in proving weighted norm inequalities, by Sinnamon [5], Neugebauer [4],
Stepanov [7]| and others. Halperin showed, in the case of A absolutely continuous, that
to each non-negative function f there corresponds a function f¢ which is non-increasing
and satisfies ||f]|, | x = ||f°|lp,». He called (a variant of) this function f°, the level
function of f. In [6] this contruction is extended to regular, Borel measures and the
dual of the Banach space L];l is characterised for 1 < p < oo. The dual space is the

space LI;\I*, with norm || f||, « » = || fll,» Where

f(z) = esssup,>,[f(y)l-

In this paper the above duality result is used to show that interpolation between
the spaces L’;\l, 1 < p < o0, again yields the spaces L’;\l.

We conclude this section with some definitions and notation. The main results of
the paper are contained in Section 2.

Let f be a A-measurable function. The distribution function of f with respect to
the measure A is my¢(a) = M : |f(x)] > a}. The non-increasing rearrangement of
fis f*(t) = inf{a : my(a) < t}, t > 0. The following simple facts follow directly

1 This paper is in final form and no version of it has been or will be submitted
elsewhere. Revised June 5, 1991.

T Research supported by a grant from the Natural Sciences and Engineering Research
Council of Canada.



191

from the definitions. 1. m;(f*(t)) < t. 2. f*(ms()) < a. 3. f*(0) = || flloo,r- 4. If
[f1 < [fol + [f1] and 0 <& <1 then f*(s) < f5((1 —&)s) + fi (es).

If 1 < p < oo, L% is the space of all A-measurable functions for which the norm
[fllon = (S0 | F[P dX)M/P is finite. LS is the space of all essentially bounded functions.
The norm on the space is || f|loo,x = esssup|f].

Reference is made to several specific theorems in [1]. That text will also serve as
our basic reference in interpolation theory and in particular we will follow the notation
used there.

Section 2: Main Results.

The interpolation results are first proved in the dual spaces Lil *. To do this, a
formula for the K-functional, K (¢, f; L*, L*), is derived and then the reiteration
theorem and the results of ordinary L% interpolation are applied. The Duality Theorem

for Real Interpolation provides the link to the spaces Lg’\l.
We begin with a simple fact.

Lemma 1. L°* = LS§° with identical norms.

Proof. Suppose f is A-measurable. Since f < f almost everywhere we certainly have
[/ llsor < I flloo,x = [If[loc « a- Conversely, for each x, f(x) = esssup, >, |f(4)] < [[floor
5O [[flloc s x = [Iflloo,x < [l flloor-

The following theorem gives a formula for the K-functional for the pair (L} *, L *).
Theorem 1. K(t, f; L\*, L*) = [} f "(s)ds = K(t, f; L}, LY).

Proof. Fix a A-measurable function f and fix ¢ > 0. The second equality above is
from [1, Theorem 5.2.1]. To establish the first we prove inequalities in both directions

beginning with K (¢, f, L}*, L3**) > fg f “(s)ds.

~ Suppose f = fo + f1. Clearly f < fo+ fi so for each € > 0 we have f "(s) <
fo (1 —¢€)s) + f1 (es) and hence

t t t
/ f "(s)ds S/ fo (1 —¢)s) ds—I—/ f1"(es) ds.
0 0 0
The second integral on the right hand side is dominated by

t£17(0) = t]l filloor = tll frlloo x A-
The first is dominated by

1
1+¢

OO_* OO_* 1 OO_ 1
| w=egas= = [ W ed= s [ h@de= il
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Letting ¢ — 0 we have

/f Vs < [follar -+t f1floos s

Since K (¢, f; L3, L*) = infpy4 = (| foll1 s x + tl] f1]loo « 1) We have the inequality.

To prove the other inequality, that K (¢, f, L}*, L*) < fo s)ds, we set a =
f () and E = {x : |f(z)| > a}. Note that \(E) = mg(a) = mf(f (t)) < t. Also,
ifA(E)<8<tthenf (1) < fT(s) < FTAE)) = [ (mg(a)) < a = f(t) so
f "(s) = f "(t). Thus f " is constant on the interval [\(E),].

Set fo(x) = max(0, |f(x)|—a)sgn(f(x)). Heresgn(z) = z/|z|if 2 # 0 and sgn(z) = 0
otherwise. fy is related to f in a simple way.

fo(x) = esssupy>,[fo(y)| = esssup,>, max(0, | f(y)| — a)

= max(0, esssup,>, | f(y)| — a) = max(0, f(z) — a).
The remaining portion of f is bounded by a. Let f; = f — fo and we have
[f1(@)] = [f(z) = fo(x)| = |f(2)] = max(0, [f(z)] — a) < a.
Thus || f1||co,x < a. We can now estimate the K-functional.
K(t, fi L3 L) < [ folliex =+t filloo .

The set E, defined earlier, contains the support of fy. fy takes the value f(x) —a on
E. This fact, together with Lemma 1 shows that the K-functional is dominated by

0o B AE) .
/_ fo(x)dx+t||f1||oo,Ag/Ef(x)—adertag/o F*(s) — ads + ta.

We now recall that f * takes the value a on the interval [\(E), ] so the last expression

is just
t t
/f*(s)—ads+ta:/ f " (s)ds.
0 0

This completes the proof.

With the above relation between the K-functionals for (L3*, L3°*) and (L}, LY)
we can prove the following.

Corollary 1. If1 <py <p;1 <00, 0< 0 <1, and 1/p = (1 —0)/po + 0/p1 then
(LR ", LR "o p = LX™ with equivalent norms.
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Proof.

1/p

oo , p 3
Iz oo, 0, = (/ (t—l/P K(t,f;Li*,L;M)) t 1dt>
0

1/p

o0 / — p _
_ ( | (r ke s o) tldt) — 1 Fllce ey, s
0

By [1, Theorem 5.2.1] we have (L}, L3°)1/, , = L} with equivalent norms. Therefore
the norm on (L}*, LY * )1/, p is equivalent to || f|[p.x = [|f|lp« - Using this fact and the
reiteration theorem ([1, Theorem 3.5.3]) we obtain

(LR I8 op = (L3, L)

(o) PO’

(L%\*’Lio*) 1

(p1

)/,pl)e,p = (L%\*’Lio*)l/P"p = LI/{*'

with equivalent norms. Here (L}*, L3 *)o 1 is taken to be Li* and (L}*, L*)1,00 IS
taken to be L5°*.

Corollary 2. If1 <py <p;1 <00, 0< 6 <1, and 1/p = (1 —0)/po + 0/p1 then
(LEob I8 Y , = LR with equivalent norms.

Proof. As mentioned, the dual space of LZ;\l is Lf\/ *for 1 < p < oo. Thus, by Corollary
1 and the Duality Theorem for Real Interpolation [1, Theorem 3.7.1],
(ng\l)/ — LI;\ * _ (Ll;\o *, Lz;\l *)G,p’ — ((L;Ko l)/, (ng\l l)/)O,p’ _ (L;l)l\o l, Ll;\l i)la,p

“—m

with equivalent norms. Here indicates the isomorphism f < L; where L¢(g) =

fR fgdX\. Since all the Lil spaces for 1 < p < oo have a common dense subset, ({f :
f is bounded and supported on (—oo, z] for some x} will do,) it follows that Lf\l =
(LA L s l)M,. This completes the proof.
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