
THE WEIGHTED HARDY INEQUALITY:
NEW PROOFS AND THE CASE P=1

GORD SINNAMON and VLADIMIR D. STEPANOV

Abstract

An elementary proof is given of the weight characterisation for the Hardy inequality

(∫ ∞
0

(∫ x

0
f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0
fpu

)1/p

, f ≥ 0, (1.1)

in the case 0 < q < p, 1 < p < ∞. It is also shown that certain weighted inequalities

with monotone kernels are equivalent to inequalities in which one of the weights is monotone.

Using this, a characterisation of those weights for which (1.1) holds with 0 < q < 1 = p is
given. Results for (1.1), considered as an inequality over monotone functions f are presented.

1. Introduction

To ask whether or not the inequality (1.1) holds is a question about a vast class of

objects—every non-negative, measurable function f on (0,∞)—and the inequality must

be true for each one. Moreover, there is a vast class of such questions, one for every choice of

p, q, u and v. It is somewhat surprising that simple answers are available. Muckenhoupt

[6] and Bradley [1] showed that if 1 < p ≤ q < ∞ then each such question may be

answered by calculating a one parameter supremum and Maz’ja [5] and Sinnamon [10]

showed that if 0 < q < p, 1 < p <∞ then the answer reduces to the finiteness of a single

integral. The techniques used to prove these weighted Hardy inequalities have opened up

the study of inequalities for operators with positive kernels and the simple answers to the
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above questions have provided a standard against which to measure the results obtained.

Extensions have been made in many directions. There are results for more general kernels,

higher dimensions, more general spaces, and different classes of functions. References may

be found in [7].

In this paper we return to the weighted Hardy inequality with only brief excursions to

results for more general kernels. In Section 2, we give a simple, elementary proof of the

known characterisation in the case 0 < q < p, 1 < p <∞. Then we restrict our attention

to the case p = 1. When p = 1 < q < ∞, standard techniques may be used but the

standard approach fails when 0 < q < 1 = p. We are able to characterise the weights

for which the Hardy inequality holds in this case by exploiting the monotonicity of the

kernel. This is done in Section 3. In Section 4 we constrain the functions f in (1.1) to be

non-increasing and give a weight characterisation. Some results are also given in the case

that f is constrained to be non-decreasing.

The notation used is standard. χE will be used to denote the function whose value on

the set E is 1 and whose value off the set E is 0. If 0 < q ≤ ∞, q′ will denote the conjugate

exponent of q defined by 1/q + 1/q′ = 1. Note that 1 and ∞ are conjugate exponents

and that q′ < 0 when q < 1. Similarly, p′ will denote the conjugate exponent of p. Any

expression of the form 0/0, ∞/∞, or 0 · ∞ is taken to be 0. Non-negative functions are

permitted to take the value ∞.

2. An Elementary Proof

The purpose of this section is to give a new proof of the weight characterisation for

the Hardy inequality (1.1) in the case 0 < q < p, 1 < p < ∞. The result was originally
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proved by Mazja [5] in the case 1 < q < p < ∞ and by Sinnamon [10] in the case

0 < q < 1 < p < ∞. Sinnamon’s proof of sufficiency involved the level function of I.

Halperin [2], an object which is complicated to construct. Proofs of necessity given by

Mazja and Sinnamon were also complicated and relied on the division of the index range

into two cases. The proof given here does not split the index range 0 < q < p into two

cases, sufficiency does not rely on the level function and necessity is much simplified.

To emphasize that our argument is elementary, we have made this section largely self-

contained at the minor expense of including two arguments that already appear in the

literature. They appear here as Propositions 2.2 and 2.3. The main result is contained in

Theorem 2.4. We begin with a simple lemma.

Lemma 2.1. Suppose α, β and γ are non-negative functions and γ is non-decreasing.

If
∫∞
x
α ≤

∫∞
x
β for all x, then

∫∞
0
γα ≤

∫∞
0
γβ.

Since γ is non-decreasing there exists a non-negative constant c and a non-negative,

Borel measure µ such that γ(t) = c +
∫ t

0
dµ almost everywhere. (See, for example [8,

p262].) Now
∫∞

0
γα = c

∫∞
0
α+

∫∞
0

(∫∞
x
α
)
dµ(x) ≤ c

∫∞
0
β+

∫∞
0

(∫∞
x
β
)
dµ(x) =

∫∞
0
γβ as

stated.

The following proposition is essentially a special case of Proposition 1(b) in [12].

Proposition 2.2. Suppose that v, b, and F are non-negative functions with F non-

decreasing such that

∫ ∞
x

b <∞ for all x > 0 and
∫ ∞

0

b =∞. (2.1)
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If 0 < q < p <∞ and 1/r = 1/q − 1/p then

(∫ ∞
0

F qv

)1/q

≤ (r/p)1/r

(∫ ∞
0

(∫ ∞
x

v

)r/q (∫ ∞
x

b

)−r/q
b(x) dx

)1/r (∫ ∞
0

F pb

)1/p

.

(2.2)

Let V (x) =
∫∞
x
v and B(x) =

∫∞
x
b. An application of Hölder’s inequality with indices

r/q and p/q splits the left hand side of (2.2) into two factors.

(∫ ∞
0

F qv

)1/q

=

(∫ ∞
0

(∫ t

0

V r/pB−r/qb

)q/r
F (t)q

(∫ t

0

V r/pB−r/qb

)−q/r
v(t) dt

)1/q

≤
(∫ ∞

0

(∫ t

0

V r/pB−r/qb

)
v(t) dt

)1/r
(∫ ∞

0

F (t)p
(∫ t

0

V r/pB−r/qb

)−p/r
v(t) dt

)1/p

.

On interchanging the order of integration, the first factor becomes
(∫∞

0
V r/qB−r/qb

)1/r
. To

complete the proof we apply Lemma 2.1 to the second factor, showing that it is dominated

by (r/p)1/r
(∫∞

0
F pb

)1/p
. Specifically, we take α(t) =

(∫ t
0
V r/pB−r/qb

)−p/r
v(t), β =

(r/p)p/rb, and γ = F p in Lemma 2.1. γ is clearly non-decreasing so it remains to check

that
∫∞
x
α ≤

∫∞
x
β for all x. Since

(∫ t
0
V r/pB−r/qb

)−p/r
is non-increasing,

∫ ∞
x

α =
∫ ∞
x

(∫ t

0

V r/pB−r/qb

)−p/r
v(t) dt ≤

(∫ x

0

V r/pB−r/qb

)−p/r ∫ ∞
x

v

and, since V is also non-increasing,

(∫ x

0

V r/pB−r/qb

)−p/r ∫ ∞
x

v ≤
(∫ x

0

B−r/qb

)−p/r
V (x)−1

∫ ∞
x

v =
(∫ x

0

B−r/qb

)−p/r
.

Finally, integration and (2.1) yield

(∫ x

0

B−r/qb

)−p/r
=
(

(p/r)B(x)−r/p
)−p/r

=
∫ ∞
x

β

which completes the proof.
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The next result is a consequence of Muckenhoupt’s weighted Hardy inequality [6] but

we prefer to deduce it from the classical Hardy inequality.

Proposition 2.3. Suppose 1 < p <∞ and w is non-negative and satisfies

0 <
∫ x

0

w <∞ for all x > 0 and
∫ ∞

0

w =∞. (2.3)

Then (∫ ∞
0

(∫ x

0

f

)p(∫ x

0

w

)−p
w(x) dx

)1/p

≤ p′
(∫ ∞

0

fpw1−p
)1/p

.

Let W (x) =
∫ x

0
w and make the substitutions t = W (x), y = W (s), f(s) = g(W (s))w(s)

in Hardy’s inequality [3, p240]

(∫ ∞
0

(
1
t

∫ t

0

g(y) dy
)p

dt

)1/p

≤ p′
(∫ ∞

0

g(y)p dy
)1/p

.

Theorem 2.4. Suppose 0 < q < p, 1 < p < ∞ and 1/r = 1/q − 1/p. Also suppose

that u and v are non-negative functions and set w = u1−p′ . Then there exists a positive

constant C such that the weighted Hardy inequality

(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpu

)1/p

(2.4)

holds for all non-negative f if and only if

D ≡

(∫ ∞
0

(∫ x

0

w

)r/p′ (∫ ∞
x

v

)r/p
v(x) dx

)1/r

<∞.

Moreover, the smallest constant C for which (2.4) holds satisfies

(p′)1/p′q1/p(1− q/p)D ≤ C ≤ (r/q)1/rp1/p(p′)1/p′D.
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(Necessity) Suppose that (2.4) holds for all f ≥ 0 and let v0 and w0 be L1 functions

such that 0 ≤ v0 ≤ v and 0 ≤ w0 ≤ w. Set f(t) =
(∫∞
t
v0

)r/pq (∫ t
0
w0

)r/pq′
w0(t) and note

that

∫ x

0

f(t) dt ≥
(∫ ∞

x

v0

)r/pq ∫ x

0

(∫ t

0

w0

)r/pq′
w0(t) dt

= (p′q/r)
(∫ ∞

x

v0

)r/pq (∫ x

0

w0

)r/p′q
.

This estimate, combined with (2.4), yields(∫ ∞
0

(
p′q

r

)q (∫ ∞
x

v0

)r/p(∫ x

0

w0

)r/p′
v0(x) dx

)1/q

≤
(∫ ∞

0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
(∫ ∞

0

fpw1−p
)1/p

= C

(∫ ∞
0

(∫ ∞
t

v0

)r/q (∫ t

0

w0

)r/q′
w0(t)pw(t)1−p dt

)1/p

≤ C

(∫ ∞
0

(∫ ∞
t

v0

)r/q (∫ t

0

w0

)r/q′
w0(t) dt

)1/p

= C(p′/q)1/p

(∫ ∞
0

(∫ ∞
x

v0

)r/p(∫ x

0

w0

)r/p′
v0(x) dx

)1/p

where the last inequality is integration by parts. Since v0 and w0 are in L1, the integral

on the right hand side is finite. Dividing by it, we have

(p′q/r)(q/p′)1/p

(∫ ∞
0

(∫ ∞
x

v0

)r/p(∫ x

0

w0

)r/p′
v0(x) dx

)1/r

≤ C.

Approximating v and w from below by increasing sequences of L1 functions and applying

the Monotone Convergence Theorem we conclude that (p′)1/p′q1/p(1 − q/p)D ≤ C as

required.

(Sufficiency) Suppose that D < ∞ and, for the moment, that (2.3) holds for w. Set

W (x) =
∫ x

0
w and apply Proposition 2.2 with b = W−pw and F (x) =

∫ x
0
f . Note that
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(2.1) holds since
∫∞
x
b =

∫∞
x
W−pw = (p′/p)W (x)1−p. The conclusion of Proposition 2.2

becomes(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ (r/p)1/r

(∫ ∞
0

(∫ ∞
x

v

)r/q (∫ ∞
x

W−pw

)−r/q
W (x)−pw(x) dx

)1/r

×
(∫ ∞

0

(∫ x

0

f

)p
W (x)−pw(x)

)1/p

.

Performing the inner integration in the first factor, and applying Proposition 2.3 to the

second factor, we reach the inequality(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ (r/p)1/r(p/p′)1/qp′

(∫ ∞
0

(∫ ∞
x

v

)r/q (∫ x

0

w

)r/q′
w(x) dx

)1/r (∫ ∞
0

fpu

)1/p

= (r/p)1/r(p/p′)1/qp′(p′/q)1/rD

(∫ ∞
0

fpu

)1/p

= (r/q)1/rp1/p(p′)1/p′D

(∫ ∞
0

fpu

)1/p

where the next to last equality is integration by parts. (The last equality only changes the

form of the constant.)

To establish sufficiency for general w, we fix non-negative functions v and w. If w = 0

almost everywhere on some interval (0, x) then translating v and w to the left will reduce

the problem to one in which this does not occur. (If w = 0 almost everywhere on (0,∞)

sufficiency holds trivially.) We therefore assume that 0 <
∫ x

0
w for all x > 0. For each

n > 0 set vn = vχ(0,n) and wn = min(w, n) + χ(n,∞). wn clearly satisfies (2.3) so our

previous argument applies and we have(∫ ∞
0

(∫ x

0

f

)q
vn(x) dx

)1/q

≤ c

(∫ ∞
0

(∫ ∞
x

vn

)r/p(∫ x

0

wn

)r/p′
vn(x) dx

)1/r (∫ ∞
0

fpw1−p
n

)1/p
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for all f ≥ 0. Here c = (r/q)1/rp1/p(p′)1/p′ . If we take f to be gmin(w, n)1/p′χ(0,n) and

use the definitions of vn and wn the inequality becomes(∫ n

0

(∫ x

0

gmin(w, n)1/p′
)q

v(x) dx
)1/q

≤ c

(∫ n

0

(∫ n

x

v

)r/p(∫ x

0

min(w, n)
)r/p′

v(x) dx

)1/r (∫ n

0

gp
)1/p

for all non-negative g. We let n → ∞, apply the Monotone Convergence Theorem and

substitute fw−1/p′ for g to get the desired inequality and complete the proof.

Remark. Integration by parts shows that if 0 < q < p, 1 < p < ∞ and w is locally

integrable or q > 1 then

D = (q/p′)1/r

(∫ ∞
0

(∫ ∞
x

v

)r/q (∫ x

0

w

)r/q′
w(x) dx

)1/r

. (2.5)

Unfortunately, this alternate expression for D may not be equal to D if q < 1 and w is not

locally integrable. For example, if w(x) = (1/x)χ(0,1)(x) and v = χ(0,1) we have D = ∞

and the integral on the right in (2.5) equal to 0.

The monotonicity of the kernel makes it possible to carry Hardy inequalities from

Lebesgue spaces to Lorentz spaces. The Lorentz space Ls,q(v(x) dx) is the set of mea-

surable functions g for which

‖g‖Ls,q(v(x) dx) ≡
(∫ ∞

0

g∗(t)q d(tq/s)
)1/q

<∞

where g∗(λ) =
∫
{x:|g(x)|>λ} v(x) dx and g∗(t) = inf{λ : g∗(λ) ≤ t}. The following result

may be compared with [9, Theorem 3].

Corollary 2.5. Suppose that p, q, r, u, v, and w are as in Theorem 2.4 and that

0 < s <∞. The inequality∥∥∥∥∫ x

0

f

∥∥∥∥
Ls,q(v(x) dx)

≤ C‖f(x)‖Lp,p(u(x) dx) (2.6)
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holds if and only if(∫ ∞
0

(∫ x

0

w

)r/p′ (∫ ∞
x

v

)(r/s)−1

v(x) dx

)1/r

<∞. (2.7)

We may restrict our attention to non-negative f in (2.6). In this case
∫ x

0
f is non-

decreasing so we easily calculate that

∥∥∥∥∫ x

0

f

∥∥∥∥
Ls,q(v(x) dx)

=

(∫ ∞
0

(∫ x

0

f

)q
q

s

(∫ ∞
x

v

)(q/s)−1

v(x) dx

)1/q

and

‖f‖Lp,p(u(x) dx) =
(∫ ∞

0

fpu

)1/p

.

Now Theorem 2.4 shows that (2.6) holds if and only if∫ ∞
0

(∫ x

0

w

)r/p′ (∫ ∞
x

q

s

(∫ ∞
t

v

)(q/s)−1

v(t) dt

)r/p
q

s

(∫ ∞
x

v

)(q/s)−1

v(x) dx

1/r

is finite. Straightforward integration shows that this is the condition (2.7).

3. The Case p = 1

The first result of this section, Theorem 3.2, shows that when the domain of a positive,

integral operator is weighted L1, the monotonicity of the kernel can be transferred to the

weight. We apply this principle to give a characterisation of those weights for which the

Hardy inequality (2.4) holds in the case 0 < q < 1 = p.

Definition 3.1. For a non-negative function u define u by u(x) = ess inf0<t<x u(t).

It is easy to see that u is non-increasing and standard arguments show that u ≤ u

almost everywhere.
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Theorem 3.2. Suppose that 0 < q <∞ and that k(x, t) is a non-negative kernel which

is non-increasing in t for each x. The best constant in the inequality(∫ ∞
0

(∫ ∞
0

k(x, t)f(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

fu, f ≥ 0, (3.1)

in unchanged when u is replaced by u.

The proof is presented in Section 5.

Since k(x, t) = χ(0,x)(t) is non-negative and non-increasing in t we can apply Theorem

3.2 to Hardy inequalities.

Theorem 3.3. Suppose that 0 < q < 1. If C is the best constant in the inequality(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

fu, f ≥ 0, (3.2)

then

(1− q)(1−q)/qC ≤

(∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q

≤ 1
q(1− q)

C. (3.3)

Theorem 3.2 shows that C is the best constant in the inequality(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

fu, f ≥ 0. (3.4)

We first consider the case u(x) =
∫∞
x
b for some b satisfying (2.1). The right hand side of

(3.4) becomes

C

∫ ∞
0

f(t)
(∫ ∞

t

b

)
dt = C

∫ ∞
0

(∫ x

0

f

)
b(x) dx.

Since any non-negative, non-decreasing function F is the limit of an increasing sequence

of functions of the form
∫ x

0
f with f ≥ 0, we see that C is also the best constant in the

inequality (∫ ∞
0

F qv

)1/q

≤ C
∫ ∞

0

Fb, F ≥ 0, F ↑ .
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The proof of [12, Proposition 1(b)] yields (3.3).

Next we consider the case of general u. If u =∞ on some interval (0, x) then translating

u and v to the left will reduce the problem to one in which this does not occur. (If u ≡ ∞

then the problem is trivial.) We therefore assume that u(x) < ∞ for all x > 0. For each

n > 0, uχ(0,n) is finite, non-increasing and tends to 0 at ∞ so we can approximate it from

above by functions of the form
∫∞
x
b with b satisfying (2.1). Let {um} be a non-increasing

sequence of such functions that converges to uχ(0,n) pointwise almost everywhere. Set

vn = vχ(0,n). The first part of the proof shows that for all non-negative functions f , the

inequality

(∫ ∞
0

(∫ x

0

f

)q
vn(x) dx

)1/q

≤ (1− q)(q−1)/q

(∫ ∞
0

um(x)q/(q−1)

(∫ ∞
x

vn

)q/(1−q)
vn(x) dx

)(1−q)/q ∫ ∞
0

fum

holds. Thus, for all non-negative functions g, the inequality

(∫ n

0

(∫ x

0

gu−1
m

)q
v(x) dx

)1/q

≤ (1− q)(q−1)/q

(∫ n

0

um(x)q/(q−1)

(∫ n

x

v

)q/(1−q)
v(x) dx

)(1−q)/q ∫ ∞
0

g

holds. As m → ∞ both u−1
m and u

q/(q−1)
m are non-decreasing sequences so the Monotone

Convergence Theorem implies that for all non-negative g we have

(∫ n

0

(∫ x

0

gu−1

)q
v(x) dx

)1/q

≤ (1− q)(q−1)/q

(∫ n

0

u(x)q/(q−1)

(∫ n

x

v

)q/(1−q)
v(x) dx

)(1−q)/q ∫ ∞
0

g.

Letting n →∞ and applying the Monotone Convergence Theorem again we obtain, with
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f = g/u,(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ (1− q)(q−1)/q

(∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q ∫ ∞
0

fu.

This gives the left hand inequality in (3.3). To establish the right hand inequality we

suppose that (3.2) and hence (3.4) holds. Since for any n and m, vn ≤ v and u ≤ um we

have (∫ ∞
0

(∫ x

0

f

)q
vn(x) dx

)1/q

≤ C
∫ ∞

0

fum, f ≥ 0.

Hence (∫ n

0

um(x)q/(q−1)

(∫ n

x

v

)q/(1−q)
v(x) dx

)(1−q)/q

≤ 1
q(1− q)

C.

Using the Monotone Convergence Theorem twice in succession as above we have the right

hand inequality in (3.3). This completes the proof.

Remark. If we denote the best constant in (2.4) by Cp then one can show, at least for

well behaved u and v, that limp→1+ Cp = C1 and that

lim
p→1+

D = lim
p→1+

∫ ∞
0

(∫ x

0

(
1
u

)p′
u

)r/p′ (∫ ∞
x

v

)r/p
v(x) dx

1/r

=

(∫ ∞
0

∥∥∥∥ 1
u
χ(0,x)

∥∥∥∥q/(1−q)
∞

(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q

=

(∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q

,

the same integral that appears in Theorem 3.3. Moreover, the constants obtained in

Theorem 2.4 are bounded as p→ 1+, unlike the constants given previously for this problem

in [10] and [7, p130]. Specifically, the conclusion

(p′)1/p′q1/p(1− q/p)D ≤ Cp ≤ (r/q)1/rp1/p(p′)1/p′D.
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of Theorem 2.4 becomes

q(1− q) lim
p→1+

D ≤ C1 ≤ (1− q)(q−1)/q lim
p→1+

D

when p→ 1+, giving precisely the same estimates as Theorem 3.3.

When 1 < q < ∞ there is a formula in [4, p316] for the best constant in (3.1). The

formula, together with Theorem 3.2, yields two expressions for the best constant when

k(x, t) is non-increasing in t. Of course they are equal so we have

ess sup
t>0

u(t)−1

(∫ ∞
0

k(x, t)qv(x) dx
)1/q

= ess sup
t>0

u(t)−1

(∫ ∞
0

k(x, t)qv(x) dx
)1/q

,

a fact which is not difficult to establish directly. It suggests, however, that perhaps we

may replace u by u in the condition of Theorem 3.3. That is, perhaps the finiteness of(∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q

(3.5)

might imply the inequality (3.2). The next example shows that this is not the case.

Example. For n = 0, 1, 2 . . . let An be a dense, open subset of ( n
n+1 ,

n+1
n+2 ) with

(Lebesgue) measure less than 2−n/(n + 2). Set A = ∪∞n=0An, u(x) = χAC (x) + (1 −

x)1/qχA(x) and v = χ(0,1). Since A is open and dense in (0, 1) we have u(x) = (1 −

x)1/qχ(0,1)(x). The inequality (3.2) does not hold because the condition of Theorem 3.3 is

not finite:∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

=
∫ 1

0

(1− x)1/(q−1)(1− x)q/(1−q) dx =
∫ 1

0

(1− x)−1 dx =∞.

On the other hand (3.5) is finite:∫ ∞
0

u(x)q/(q−1)

(∫ ∞
x

v

)q/(1−q)
v(x) dx

=
∫
AC

(1− x)q/(1−q) dx+
∞∑
n=0

∫
An

(1− x)−1 dx ≤ 1 +
∞∑
n=0

(n+ 2)(2−n/(n+ 2)) ≤ 3.
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4. Inequalities for Monotone Functions

Here we consider the weighted Hardy inequality with 0 < q < 1 = p where the function

f is constrained to be monotone. The case in which f is non-increasing reduces to our

previous results (Theorem 4.1) but the case in which f is non-decreasing is more difficult.

An analogue of Theorem 3.1 is given which is of independent interest but it does not lead

to a complete resolution of the problem.

Theorem 4.1. Suppose 0 < q < 1. There exists a C > 0 such that the inequality(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

fu f ≥ 0, f ↓, (4.1)

holds if and only if both(∫ ∞
0

(
ess inf
0<t<x

1
t

∫ t

0

u

)q/(q−1)(∫ ∞
x

v

)q/(1−q)
v(x) dx

)(1−q)/q

<∞ (4.2)

and (∫ ∞
0

(∫ x

0

u

)q/(q−1)(∫ x

0

tqv(t) dt
)q/(1−q)

xqv(x) dx

)(1−q)/q

<∞. (4.3)

Every non-negative, non-increasing function f is the pointwise limit of an increasing

sequence of functions of the form
∫∞
y
h, h ≥ 0. (Set fn = n

∫ x+(1/n)

x
fχ(0,n) and note

that fn is an increasing sequence which converges pointwise almost everywhere to f even

if f(∞) > 0. Also, fn(x) =
∫∞
x
n
[
f(t)χ(0,n)(t)− f(t+ (1/n))χ(0,n)(t+ (1/n))

]
dt which

is of the required form.) Thus, (4.1) is equivalent to(∫ ∞
0

(∫ x

0

(∫ ∞
y

h

)
dy

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

(∫ ∞
y

h

)
u(y) dy, h ≥ 0,

which is, interchanging the order of integration,(∫ ∞
0

(∫ x

0

th(t) dt+ x

∫ ∞
x

h(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

h(t)
(∫ t

0

u

)
dt, h ≥ 0.
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This inequality holds if and only if both

(∫ ∞
0

(∫ x

0

th(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

h(t)
(∫ t

0

u

)
dt, h ≥ 0, (4.4)

and (∫ ∞
0

(
x

∫ ∞
x

h(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

h(t)
(∫ t

0

u

)
dt, h ≥ 0, (4.5)

hold. Theorem 3.3 shows that (4.2) and (4.3) are necessary and sufficient for (4.4) and

(4.5) respectively.

Remark. For purposes of comparison we note that (4.1) holds for 1 < q < ∞ if and

only if

ess sup
x>0

(
1
x

∫ x

0

u

)−1(∫ ∞
x

v

)1/q

<∞

and

ess sup
x>0

(∫ x

0

u

)−1(∫ x

0

tqv(t) dt
)1/q

<∞.

Here we have applied [4, p316] to (4.4) and (4.5), which are also jointly equivalent to (4.1)

when 1 < q <∞.

Our analogue of Theorem 3.1 for non-decreasing f requires the notion of the level

function.

Proposition 4.2. [2, 11] If 0 ≤ u ∈ L1 ∩ L∞, then there exists a function uo, called

the level function of u (with respect to Lebesgue measure), with the following properties:

(1) uo is non-increasing on (0,∞),

(2)
∫ x

0
u ≤

∫ x
0
uo for almost every x,

(3) there are disjoint intervals Ii such that uo is constant on Ii with value (1/|Ii|)
∫
Ii
u

and uo = u almost everywhere off the union of the Ii.
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The level function is defined for more general u in [11] but we content ourselves with

this special case to avoid technical difficulties. (The level functions defined in [2] and in

[11] are slightly different but when taken with respect to Lebesgue measure they coincide.)

Theorem 4.3. Suppose that 0 < q <∞ and that k(x, t) is a non-negative kernel which

is non-increasing in t for each x. If 0 ≤ u ∈ L1∩L∞ then the best constant in the inequality

(∫ ∞
0

(∫ ∞
0

k(x, t)f(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

fu, f ≥ 0, f ↑, (4.6)

is unchanged when u is replaced by uo.

The proof is presented in Section 5.

Theorem 4.4. Suppose 0 < q < 1 and 0 ≤ u ∈ L1 ∩L∞. The best constants in each of

the following inequalities coincide.

(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

fu, f ≥ 0, f ↑ . (4.7)

(∫ ∞
0

(∫ x

0

f

)q
v(x) dx

)1/q

≤ C
∫ ∞

0

fuo, f ≥ 0, f ↑ . (4.8)

(∫ ∞
0

(∫ x

0

(x− t)h(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

h(x)
(∫ ∞

x

u

)
dx, h ≥ 0. (4.9)

(∫ ∞
0

(∫ x

0

(x− t)h(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

h(x)
(∫ ∞

x

uo
)
dx, h ≥ 0. (4.10)

(∫ ∞
0

F qv

)1/q

≤ C
∫ ∞

0

F dµ, F ≥ 0, F (0) = 0, F convex. (4.11)

Here µ is the Borel measure defined by uo(x) =
∫∞
x
dµ for almost every x.

The equivalence of (4.7) and (4.8) follows from Theorem 4.3. Each f in (4.7), even if

f(0) > 0, may be approximated pointwise from below by a function of the form
∫ x

0
h with
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h ≥ 0. Substituting
∫ x

0
h for f in (4.7) and interchanging the order of integration on both

sides produces (4.9). In the same way (4.10) is equivalent to (4.8).

To see that (4.11) also reduces to (4.8) we note that each F from (4.11) may be written

in the form
∫ x

0
f with f ≥ 0 and f ↑. Interchanging the order of integration completes the

equivalence and the proof.

Perhaps the most interesting consequence of this theorem is that the best constant for

an embedding of the cone of convex functions (4.11) is also the best constant for a weighted

Riemann-Liouville inequality (4.9).

5. Proofs of Two Theorems

Proof of Theorem 3.2. Let C be the best constant in (3.1) and let C be the best

constant in (3.1) with u replaced by u. Since u ≤ u almost everywhere, C ≤ C. To prove

the reverse inequality it is enough to show that for all non-negative f ∈ L1(x,∞)

(∫ ∞
0

(∫ ∞
x

k(x, t)f(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞
x

fu, (5.1)

where x = inf{x ≥ 0 : u(x) <∞}.

Fix a non-negative f ∈ L1(x,∞) and an ε ∈ (0, 1) and set A = {x > x : u(x) < ε+u(x)}

and Bj = {x > x : jε ≤ u(x) < (j + 1)ε} for j = 0, 1, . . . . Let J = {j : |Bj | > 0} and note

that ∪j∈JBj has full measure in (x,∞). Since u is non-increasing we can define aj and bj

with x ≤ aj < bj ≤ ∞ by (aj , bj) ⊂ Bj ⊂ [aj , bj ] for each j ∈ J . Moreover, if j1 < j2 with

j1, j2 ∈ J we have aj2 < bj2 ≤ aj1 < bj1 .

We wish to show that each interval Bj has part of the set A, the points at which u and u

are close, near its left endpoint. To do this we define Aj = A∩(aj , aj+ε(bj−aj)) ⊂ Bj for
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each j ∈ J and demonstrate that Aj has positive measure. Since u ≤ u almost everywhere

we have, for each j ∈ J ,

ess inf
0<t<aj

u(t) ≥ ess inf
0<t<aj

u(t) ≥ (j + 1)ε > u(aj + ε(bj − aj)) = ess inf
0<t<aj+ε(bj−aj)

u(t).

It follows that on some subset of (aj , aj+ε(bj−aj)) of positive measure, u < (j+1)ε ≤ u+ε.

Thus |Aj | > 0.

We are now ready to define the functions fε which are closely related to f but are

supported in A. We set fε =
∑
j∈J

(∫ bj
aj
f
)
|Aj |−1χAj . The first observation to make

about the functions fε is that their L1
u norm is almost less than the L1

u norm of f . We

calculate as follows.

∫ ∞
x

fεu =
∑
j∈J

(∫ bj

aj

f

)
|Aj |−1

∫
Aj

u ≤
∑
j∈J

(∫ bj

aj

f

)
(j + 2)ε

≤
∑
j∈J

(∫ bj

aj

fu+ 2ε
∫ bj

aj

f

)
=
∫ ∞
x

fu+ 2ε
∫ ∞
x

f.

Our second observation is that the mass of the functions fε is almost farther left than

the mass of f so the inequality
∫ x
x
f ≤

∫ x
x
fε almost holds. To be precise, if x ∈ ∪j∈J(aj +

ε(bj − aj), bj) then x ∈ (aj0 + ε(bj0 − aj0), bj0) for some j0 ∈ J so, recalling the reversed

order of the intervals Bj , we have

∫ x

x

f ≤
∑

j0≤j∈J

∫ bj

aj

f =
∑

j0≤j∈J

(∫ bj

aj

f

)
|Aj |−1

∫ aj+ε(bj−aj)

aj

χAj

=
∑

j0≤j∈J

∫ aj+ε(bj−aj)

aj

fε ≤
∫ aj0+ε(bj0−aj0 )

x

fε ≤
∫ x

x

fε.

Thus
∫ x
x
f ≤ lim infε→0+

∫ x
x
fε pointwise almost everywhere.

The monotonicity of the kernel k(x, t) for each x enables us to write k(x, t) = kx+
∫∞
t
dσx

for almost every t, where kx is a non-negative constant and σx is a non-negative, Borel
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measure. This fact, together with our second observation and Fatou’s Lemma allow us to

estimate the operator as follows.∫ ∞
x

k(x, t)f(t) dt =
∫ ∞
x

(
kx +

∫ ∞
t

dσx

)
f(t) dt

= kx

∫ ∞
x

f(t) dt+
∫ ∞
x

∫ s

x

f(t) dt dσx(s)

≤ lim inf
ε→0+

(
kx

∫ ∞
x

fε(t) dt+
∫ ∞
x

∫ s

x

fε(t) dt dσx(s)
)

= lim inf
ε→0+

∫ ∞
x

k(x, t)fε(t) dt.

We use this estimate and Fatou’s Lemma again as well as the definition of C and our

first observation to obtain(∫ ∞
0

(∫ ∞
x

k(x, t)f(t) dt
)q

v(x) dx
)1/q

≤ lim inf
ε→0+

(∫ ∞
0

(∫ ∞
x

k(x, t)fε(t) dt
)q

v(x) dx
)1/q

≤ lim inf
ε→0+

C

∫ ∞
x

fεu ≤ C lim inf
ε→0+

(∫ ∞
x

fu+ 2ε
∫ ∞
x

f

)
= C

∫ ∞
x

fu.

We have established (5.1) which completes the proof.

Proof of Theorem 4.3. Let C be the best constant in (4.6) and let Co be the best

constant in (4.6) with u replaced by uo. Proposition 4.2, part (3) shows that
∫∞

0
uo =

∫∞
0
u.

Combining this with part (2) we have
∫∞
x
uo ≤

∫∞
x
u for all x > 0. Lemma 2.1 shows that

if f is non-negative and non-decreasing then
∫∞

0
fu0 ≤

∫∞
0
fu. It follows that C ≤ Co.

To prove that Co ≤ C we fix a non-negative, non-decreasing function f and construct

a related function g. On each interval Ii from Proposition 4.2, part (3) let g be constant

with value |Ii|−1
∫
Ii
f . Otherwise let g = f . Clearly

∫
Ii
g =

∫
Ii
f for each i. It follows that

if t is not interior to any of the intervals Ii then
∫ t

0
g =

∫ t
0
f . If, on the other hand, t is

interior to one of the intervals Ii, call it (a,b), then we have∫ t

0

g =
∫ a

0

g +
∫ t

a

g =
∫ a

0

f +
t− a
b− a

∫ b

a

f ≥
∫ t

0

f
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where the inequality is a consequence of the monotonicity of f . We have shown that
∫ t

0
f ≤∫ t

0
g for all t and we conclude, just as in Lemma 2.1, that for each x,

∫∞
0
k(x, t)f(t) dt ≤∫∞

0
k(x, t)g(t) dt because k(x, t) is non-increasing in t.

The definition of g was made specifically for the following calculation.

∫ ∞
0

gu =
∫

(∪Ii)C
fu+

∑
i

∫
Ii

(
|Ii|−1

∫
Ii

f

)
u

=
∫

(∪Ii)C
fu+

∑
i

∫
Ii

(
|Ii|−1

∫
Ii

u

)
f =

∫ ∞
0

fuo.

Now we can complete the proof.

(∫ ∞
0

(∫ ∞
0

k(x, t)f(t) dt
)q

v(x) dx
)1/q

≤
(∫ ∞

0

(∫ ∞
0

k(x, t)g(t) dt
)q

v(x) dx
)1/q

≤ C
∫ ∞

0

gu = C

∫ ∞
0

fuo.

Since the above inequality holds for all non-negative, non-decreasing functions f we have

shown that Co ≤ C.
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