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Abstract. A perturbation is introduced into the usual weighted Hardy inequalities
yielding a new inequality that is used in looking at the trace problem on Lebesgue

spaces with mixed norms.

1. Introduction

The inequality∫ A

0

x−εγ
∫ xγ

0

yεf(y) dy dx ≤ (γε)−1

∫ Aγ

0

f(y) dy, f ≥ 0, (1.1)

is an important tool for proving sharp results (see [5]) about the regularity of the
trace on ∂Ω× (0, T ) for functions in the space Lp(0, T ;W 2

p (Ω)) ∩W 1
p (0, T ;Lp(Ω)).

The inequality belongs to a well-known class of weighted Hardy inequalities (see
Proposition 2.2) which are employed in various contexts to compare norms of func-
tions to norms of their averages. When considering the trace problem for the more
general class of functions Lq(0, T ;W 2

p (Ω))∩W 1
q (0, T ;Lp(Ω)), the related inequality(∫ T

0

(∫ A

0

x−1−β−εγ
∫ xβ

0

∫ xγ

0

yερ(y, t+ a) dy da dx

)p
dt

)1/p

≤ p(γε)−1

(∫ T+Aβ

0

(∫ Aγ

0

ρ(y, τ) dy

)p
dτ

)1/p

, ρ ≥ 0, (1.2)

arises (see [6]). The aim of this paper, realized in Corollary 2.4, is to prove the
inequality (1.2). In Theorem 2.3 we prove a somewhat more general result in order
to place (1.2) properly in the setting of weighted Hardy inequalities.
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The results of Theorem 2.3 we call perturbed weighted Hardy inequalities. We
regard the average x−β

∫ xβ
0

(. . . ) as a perturbation since without it (1.2) would
follow immediately from (1.1).

2. Perturbed Weighted Hardy Inequalities

We begin with a lemma that is interesting in its own right. Although it is easy
to see that the integral average 1

x

∫ x
0
f of an L1 function is not necessarily in L1,

the lemma shows that if f = f(x, t) ∈ Lp(L1) = Lp(L1(dx), dt) then the integral
average 1

x

∫ x
0
f(x, t + a) da is again in Lp(L1) for 1 ≤ p < ∞. A similar averaging

operator was studied in [4] where its boundedness on mixed norm weighted spaces
was shown to characterize Muckenhoupt’s Ap weight condition.

The important feature of this lemma for the purpose of application to the regu-
larity of the trace is to get the Lp(L1) norm rather than the L1(Lp) norm on the
right hand side. This renders the task more difficult because, in view of Minkowski’s
integral inequality, the former norm is the smaller of the two.

Lemma 2.1. Suppose that 1 ≤ p <∞, 0 < β, γ <∞, and 0 < A, T ≤ ∞. Then(∫ T

0

(∫ A

0

x−β
∫ xβ

0

f(x, t+ a) da dx

)p
dt

)1/p

≤ p

(∫ T+Aβ

0

(∫ A

0

f(x, τ) dx

)p
dτ

)1/p

, f ≥ 0. (2.1)

Proof. We proceed by duality. Let φ ∈ Lp′(O, T ) with ‖φ‖Lp′ (0,T ) ≤ 1 and set

Iφ =

∣∣∣∣∣
∫ T

0

φ(t)
∫ A

0

x−β
∫ xβ

0

f(x, t+ a) da dx dt

∣∣∣∣∣ .
Here p′ is the conjugate index of p satisfying 1/p+1/p′ = 1. Note that 1 < p′ ≤ ∞.
To establish (2.1) it is enough to show that

Iφ ≤ p

(∫ T+Aβ

0

(∫ A

0

f(x, τ) dx

)p
dτ

)1/p

. (2.2)

Extend φ to be zero off (0, T ) so that φ ∈ Lp′(R) and note that ‖φ‖Lp′ (R) ≤ 1.
Once we take the absolute value inside the integral defining Iφ we may apply

Tonelli’s Theorem to interchange the order of integration. We obtain

Iφ ≤
∫ T

0

|φ(t)|
∫ A

0

x−β
∫ xβ

0

f(x, t+ a) da dx dt

=
∫ A

0

x−β
∫ xβ

0

∫ T

0

|φ(t)|f(x, t+ a) dt da dx

=
∫ A

0

x−β
∫ xβ

0

∫ T+a

a

|φ(τ − a)|f(t, τ) dτ da dx
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where we have made the substitution τ = t + a. Since a ≤ xβ and x ≤ A we see
that τ ≤ T + a ≤ T + Aβ so we may extend the range of the inner integral from
(a, T + a) to (0, T +Aβ). Following this estimate with another interchange yields

Iφ ≤
∫ A

0

x−β
∫ xβ

0

∫ T+Aβ

0

|φ(τ − a)|f(x, τ)| dτ da dx

=
∫ T+Aβ

0

∫ A

0

x−β
∫ xβ

0

|φ(τ − a)| daf(x, τ) dx dτ

≤
∫ T+Aβ

0

Mφ(τ)

(∫ A

0

f(x, τ) dx

)
dτ.

The last inequality follows from the definition of the one-sided Hardy-Littlewood
Maximal Function, Mφ(τ). It is shown in [3] that for 1 < p′ ≤ ∞,

Mψ(τ) = sup
h>0

1
h

∫ h

0

|ψ(τ − a)| da

satisfies ‖Mψ‖Lp′ (R) ≤ p‖ψ‖Lp′ (R) for all ψ ∈ Lp′(R). Taking ψ = φ we have

‖Mφ‖Lp′ (0,T+Aβ) ≤ ‖Mφ‖Lp′ (R) ≤ p‖φ‖Lp′ (R) ≤ p.

Applying Hölder’s inequality with indices p′ and p to the last estimate of Iφ yields

Iφ ≤‖Mφ‖Lp′ (0,T+Aβ)

(∫ T+Aβ

0

(∫ A

0

f(x, τ) dx

)p
dτ

)1/p

≤p

(∫ T+Aβ

0

(∫ A

0

f(x, τ) dx

)p
dτ

)1/p

.

This proves (2.2) and completes the proof.

The weighted Hardy inequalities that we intend to perturb are given in the
following proposition. Note that (1.1) is just the special case r = s = 1.

Proposition 2.2. [1] Suppose that 1 ≤ s ≤ r < ∞, 0 < γ, ε < ∞, 0 < A ≤ ∞,
and µ = 1− 1/s+ 1/r. Then

(∫ A

0

x−1−εγr

(∫ xγ

0

y−1+ε+1/sf(y) dy

)r
dx

)1/r

≤ γ−1/r(µ/ε)µ
(∫ Aγ

0

f(y)s dy

)1/s

, f ≥ 0.
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Theorem 2.3. Suppose that 1 ≤ s ≤ r ≤ p <∞, 0 < β, γ, ε <∞, 0 < A < T ≤ ∞
and µ = 1− 1/s+ 1/r. Then∫ T

0

(∫ A

0

x−1−β−εγr
∫ xβ

0

(∫ xγ

0

y−1+ε+1/sρ(y, t+ a) dy

)r
da dx

)p/r
dt

1/p

≤ (p/rγ)1/r(µ/ε)µ

∫ T+Aβ

0

(∫ Aγ

0

ρ(y, τ)s dy

)p/s
dτ

1/p

, ρ ≥ 0.

Proof. Apply Lemma 2.1 with p replaced by p/r and f(x, τ) replaced by

x−1−εγr

(∫ xγ

0

y−1+ε+1/sρ(y, τ) dy

)r
to get the first inequality in∫ T

0

(∫ A

0

x−1−β−εγr
∫ xβ

0

(∫ xγ

0

y−1+ε+1/sρ(y, t+ a) dy

)r
da dx

)p/r
dt

r/p

≤ (p/r)

∫ T+Aβ

0

(∫ A

0

x−1−εγr

(∫ xγ

0

y−1+ε+1/sρ(y, τ) dy

)r
dx

)p/r
dτ

r/p

≤ (p/r)[γ−1/r(µ/ε)µ]r

∫ T+Aβ

0

(∫ Aγ

0

ρ(y, τ)s dy

)p/s
dτ

r/p

.

The second inequality relies on Proposition 2.2. Raising both sides to the power
1/r completes the proof.

Remarks. 1. Hölder’s inequality shows that
(
x−β

∫ xβ
0

. . .
)r
≤ x−β

∫ xβ
0

(. . . )r so
Theorem 2.3 also applies if the perturbation is made inside the rth power rather
than outside as stated.

2. The constant, γ−1/r(µ/ε)µ, given in Proposition 2.2 is not best possible when
1 < s < r. The best possible constant,

γ−1/rε−µ(1/s′)1/s′(1/r)1/r

(
r(1− µ)Γ(1/(1− µ))

Γ(1/(r(1− µ))Γ(1/(r′(1− µ))

)1−µ

,

follows from the results of [2]. The obvious improvement in Theorem 2.3 may be
made.

Corollary 2.4. If p ≥ 1, 0 < β, γ, ε <∞, and 0 < A, T ≤ ∞ then inequality (1.2)
holds.

Proof. Take r = s = 1 in Theorem 2.3.
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