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Synopsis

Weighted inequalities for certain Hardy-type averaging operators in Rn are shown

to be equivalent to weighted inequalities for one-dimensional operators. Known re-

sults for the one-dimensional operators are applied to give weight characterisations,
with best constants in some cases, in the higher dimensional setting. Operators

considered include averages over all dilations of very general starshaped regions as
well as averages over all balls touching the origin. As a consequence, simple weight

conditions are given which imply weighted norm inequalities for a class of integral

operators with monotone kernels.

1. Introduction

The one-dimensional theory of Hardy-type inequalities is progressing well. More

and more often, new problems that arise can be solved using known results or by

established techniques. The theory in higher dimensions is perceived to be much

more difficult and indeed there are significant problems in higher dimensions for

which the one-dimensional techniques are not adequate. It is important to recog-

nize, however, that many higher dimensional problems are really one-dimensional in
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nature and may be successfully analysed using the one-dimensional theory. We give

weight characterisations for two such problems, and apply the results to establish

best constants in inequalities involving weighted averages over starshaped domains.

The higher dimensional results also provide an elegant approach to studying one-

dimensional integral operators with monotone kernels.

For the first class of problems we look at the operator that averages functions

over regions which are dilations of a fixed region, starshaped with respect to the

origin. (A subset of Rn is starshaped with respect to the origin provided that for

each point in the set, the closed segment joining that point to the origin lies entirely

within the set.) This is a one-parameter family of regions so it is not surprising

that weighted inequalities for the associated averaging operator can be reduced to

one-dimensional inequalities. It is somewhat surprising that averages over such

families are as easily treated as averages over balls centered at the origin. (The

result for averages over balls was given in [4].) The main result is in Theorem 2.1

and Theorem 2.4 gives the best constants in these inequalities for a certain class of

weight functions.

The second class of weighted inequalities involves averaging a function over a

genuinely n-dimensional collection of regions—all the balls with the origin on their

boundary. This time, the reduction to one-dimension depends on showing that it

is sufficient to test the inequality over the class of radial functions. This is why we

restrict ourselves in Theorem 3.2 to radial weight functions. Christ and Grafakos

in [3] have given unweighted inequalities for this operator.

In the last section we look at inequalities for more general integral operators and

derive sufficient conditions for weighted inequalities in one-dimension by considering

them as restrictions of higher-dimensional ones.
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If u is a radial function on Rn, ie., if u(x) = u(y) whenever |x| = |y|, then we

will abuse notation by sometimes writing u(s) instead of u(x) when s = |x|.

We denote the unit sphere by Ω = {x ∈ Rn : |x| = 1}.

The notation A ≈ B means that there exist positive constants c1 and c2 such

that c1A ≤ B ≤ c2A.

2. Averages over starshaped regions

We will call a region S ∈ Rn smoothly starshaped provided there exists a

piecewise-C1 function ψ defined on the unit sphere in Rn and having real non-

negative values, with S = {x ∈ Rn \ {0} : |x| ≤ ψ(x/|x|)}.

If S is smoothly starshaped, let B = {x ∈ Rn \ {0} : |x| = ψ(x/|x|)} and note

that B is contained in the boundary of S. Since ψ is not assumed to be continuous,

B may not be the whole boundary of S. The family of regions we average over is

the collection of dilations of S.

Let E be the union of all dilations of S, E = ∪α>0αS, and note that E = Rn

whenever 0 is in the interior of S. For non-zero x ∈ E, since S is starshaped, there

is a least positive dilation αxS which contains x. We write Sx = αxS and note that

x/αx ∈ B so that x is on the boundary of S.

The n-dimensional weighted inequality that we characterise in this section in-

volves averages over the regions Sx.

Theorem 2.1. Suppose 0 < q < ∞, 1 < p < ∞, and u and v are non-negative

weight functions on E. Then there exists a constant C > 0 such that

(∫
E

∣∣∣∣∫
Sx

f(y) dy
∣∣∣∣q v(x) dx

)1/q

≤ C
(∫

E

|f(y)|pu(y) dy
)1/p

(2.1)

for all locally integrable functions f if and only if either
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p ≤ q and

K ≡ sup
z∈E\{0}

(∫
Sz

u(y)1−p′ dy

)1/p′
(∫

E\Sz
v(x) dx

)1/q

<∞,

or q < p, 1/r = 1/q − 1/p, and

D ≡

∫
E

(∫
Sz

u(y)1−p′ dy

)r/p′ (∫
E\Sz

v(x) dx

)r/p
v(z) dz

1/r

<∞.

Moreover, the smallest constant C for which (2.1) holds satisfies

K ≤ C ≤ p1/q(p′)1/p′K if p ≤ q, and

(p′)1/p′q1/p(1− q/p)D ≤ C ≤ (r/q)1/rp1/p(p′)1/p′D if q < p.

We will establish Theorem 2.1 as a corollary of our reduction of the n-dimensional

inequality to a one-dimensional one. To prove the reduction we make the changes

of variable

x = sσ and y = tτ (2.2)

where x, y ∈ E \ {0}, s, t ∈ (0,∞), and σ, τ ∈ B. Since B is piecewise smooth we

can integrate over it and we have, for any x ∈ E and any measurable f

∫
Sx

f(y) dy =
∫ αx

0

∫
B

f(tτ)tn−1 dτ dt.

Theorem 2.2. Suppose 0 < q < ∞, 1 < p < ∞, u and v are non-negative weight

functions on E and C > 0. Set

V (s) =
∫
B

v(sσ)sn−1 dσ, and U(t) =
(∫

B

u(tτ)1−p′tn−1 dτ

)1−p

.

Then (2.1) holds for all locally integrable functions f : E → R if and only if(∫ ∞
0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q V (s) ds

)1/q

≤ C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

(2.3)
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holds for all locally integrable functions F : (0,∞) → R. In particular, the best

constants in inequalities (2.1) and (2.3) coincide.

Proof. Suppose (2.3) holds and fix a locally integrable function f : E → R. Set

F (t) =
∫
B

f(tτ)tn−1 dτ. (2.4)

Make the changes of variable (2.2) in the left hand side of (2.1) and notice that for

σ ∈ B, αsσ = s.

(∫
E

∣∣∣∣∫
Sx

f(y) dy
∣∣∣∣q v(x) dx

)1/q

=
(∫

E

∣∣∣∣∫ αx

0

∫
B

f(tτ)tn−1 dτ dt

∣∣∣∣q v(x) dx
)1/q

=
(∫ ∞

0

∫
B

∣∣∣∣∫ s

0

∫
B

f(tτ)tn−1 dτ dt

∣∣∣∣q v(sσ)sn−1 dσ ds

)1/q

=
(∫ ∞

0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q V (s) ds

)1/q

≤C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

.

The last inequality is the hypothesis (2.3). Use Hölder’s inequality in the integral

defining F to estimate the last line above as follows.

C

(∫ ∞
0

|F (t)|pU(t) dt
)1/p

=C
(∫ ∞

0

∣∣∣∣∫
B

f(tτ)tn−1 dτ

∣∣∣∣p U(t) dt
)1/p

≤C
(∫ ∞

0

(∫
B

|f(tτ)|pu(tτ)tn−1 dτ

)
×

(∫
B

u(tτ)1−p′tn−1 dτ

)p/p′
U(t) dt

)1/p

=C
(∫ ∞

0

∫
B

|f(tτ)|pu(tτ)tn−1 dτ dt

)1/p

=C
(∫

E

|f(y)|pu(y) dy
)1/p

.
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Thus (2.1) holds.

To prove the converse, suppose that (2.1) holds and fix a locally integrable

function F : (0,∞)→ R. Define f : E → R by

f(tτ) = F (t)U(t)p
′−1u(tτ)1−p′

and use the definition of U to see that the relationship (2.4) is still valid. As in the

first part of the proof we have

(∫ ∞
0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q V (s) ds

)1/q

=
(∫

E

∣∣∣∣∫
Sx

f(y) dy
∣∣∣∣q v(x) dx

)1/q

.

Now the inequality (2.1) becomes

(∫ ∞
0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q V (s) ds

)1/q

≤ C
(∫

E

|f(y)|pu(y) dy
)1/p

.

Using the definitions of f and U we recognize the right hand side above as the right

hand side of (2.3), that is

C

(∫
E

|f(y)|pu(y) dy
)1/p

=C
(∫ ∞

0

∫
B

|f(tτ)|pu(tτ)tn−1 dτ dt

)1/p

=C
(∫ ∞

0

|F (t)|pU(t)p
′
∫
B

u(tτ)(1−p′)p+1tn−1 dτ dt

)1/p

=C
(∫ ∞

0

|F (t)|pU(t) dt
)1/p

.

This establishes (2.3) and completes the proof.

Necessary and sufficient conditions on indices p and q and weights U and V for

the weighted Hardy inequality (2.3) to hold are well known. They can now be

applied to characterise the equivalent inequality (2.1) and complete the proof of

Theorem 2.1.
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Proof of Theorem 2.1. In the case p ≤ q, (2.3) holds if and only if, [2] or [8],

sup
ρ>0

(∫ ρ

0

U(t)1−p′ dt

)1/p′ (∫ ∞
ρ

V (s) ds
)1/q

<∞.

Use the definitions of U and V from Theorem 2.2 to get the equivalent statement

sup
ρ>0

(∫ ρ

0

∫
B

u(tτ)1−p′tn−1 dτ dt

)1/p′ (∫ ∞
ρ

∫
B

v(sσ)sn−1 dσ ds

)1/q

<∞.

Now replace ρ by αz, make the changes of variable (2.2), and notice that y ∈ Sz if

and only if t ≤ ρ and x /∈ Sz if and only if s > ρ. The condition becomes

sup
z∈E\{0}

(∫
Sz

u(y)1−p′ dy

)1/p′
(∫

E\Sz
v(x) dx

)1/q

<∞.

This condition on p, q, u and v is necessary and sufficient for the inequality (2.3)

and, in view of Theorem 2.2, also necessary and sufficient for the inequality (2.1)

as required.

In the case q < p we define r by 1/r = 1/q − 1/p. The inequality (2.3) holds if

and only if, [9] or [8],(∫ ∞
0

(∫ ρ

0

U(t)1−p′ dt

)r/p′ (∫ ∞
ρ

V (s) ds
)r/p

V (ρ) dρ

)1/r

<∞.

Proceeding as in the first case we use the definitions of U and V from Theorem 2.2

to get the equivalent condition(∫ ∞
0

(∫ ρ

0

∫
B

u(tτ)1−p′tn−1 dτ dt

)r/p′
×

(∫ ∞
ρ

∫
B

v(sσ)tn−1 dσ ds

)r/p ∫
B

v(ρω)ρn−1 dω dρ

)1/r

<∞.

The changes of variable (2.2) as well as z = ρω reduce this to∫
E

(∫
Sz

u(y)1−p′ dy

)r/p′ (∫
E\Sz

v(x) dx

)r/p
v(z) dz

1/r

<∞
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as required. The estimates for the best constant C are exactly the estimates for

the one-dimensional case established in [2] and [9].

It is important to notice that Theorem 2.2 shows that the n-dimensional inequal-

ity is equivalent to a one-dimensional one with the identical constant. Thus the

problem of finding the best constant in (2.1) is also reduced to a one-dimensional

problem.

Suppose now that 1 < p ≤ q <∞ and define Bp,q by

Bp,q =

{
p′ p = q(
p′

q

)1/q (
q
r

)1/r ( Γ(r)
Γ(r/q′)Γ(r/q)

)1/r

p < q.

Here 1/r = |1/p− 1/q|.

In 1930, Hardy and Littlewood [5] and Bliss [1] proved that Bp,q is the smallest

constant C for which the inequality(∫ ∞
0

∣∣∣∣∫ s

0

g(t) dt
∣∣∣∣q s−1−q/p′ ds

)1/q

≤ C
(∫ ∞

0

|g(t)|p dt
)1/p

(2.5)

holds for all g. We require a slight extension of this result suggested by the work

of Manakov [6].

Proposition 2.3. Suppose 1 < p ≤ q < ∞ and let a > 0. The smallest constant

C for which(∫ ∞
0

∣∣∣∣∫ x

0

f(y) dy
∣∣∣∣q x−1−aq/p′ dx

)1/q

≤a−1/q−1/p′C

(∫ ∞
0

|f(y)|py(a−1)(1−p) dy

)1/p

(2.6)

holds for all f is C = Bp,q.

Proof. Make the substitutions t = ya, s = xa, and g(t) = f(y)/(aya−1) in (2.5) to

get the equivalent inequality (2.6).

As a corollary to Theorem 2.2 we can extend the above Proposition to higher

dimensions.
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Theorem 2.4. Suppose 1 < p ≤ q < ∞ and let a > 0. The smallest constant C

for which

(∫
E

∣∣∣∣∫
Sx

f(y) dy
∣∣∣∣q |Sx|−1−aq/p′ dx

)1/q

≤ a−1/q−1/p′C

(∫
E

|f(y)|p|Sy|(a−1)(1−p) dy

)1/p

(2.7)

holds for all f is C = Bp,q.

Proof. Inequality (2.7) is a special case of (2.1) with v(x) = |Sx|−1−aq/p′ , u(y) =

|Sy|(a−1)(1−p), and C replaced by a−1/q−1/p′C. According to Theorem 2.2, there-

fore, (2.7) is equivalent, with identical constants C to

(∫ ∞
0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q V (s) ds

)1/q

≤ a−1/q−1/p′C

(∫ ∞
0

|F (t)|pU(t) dt
)1/p

(2.8)

with U and V depending on u and v as in Theorem 2.2. To calculate U and V

recall that αsσ = s so |Ssσ| = sn|S|.

∫ t

0

V (s)sn(1+aq/p′) ds =
∫ t

0

∫
B

v(sσ)sn−1 dσsn(1+aq/p′) ds

=
∫ t

0

∫
B

(sn|S|)−1−aq/p′sn−1 dσsn(1+aq/p′) ds

=|S|−1−aq/p′
∫ t

0

∫
B

sn−1 dσ ds

=|S|−1−aq/p′tn|S| = |S|−aq/p
′
tn.

Differentiate to get V (t)tn(1+aq/p′) = |S|−aq/p′ntn−1 and conclude that

V (t) = n|S|−aq/p
′
t−1−naq/p′ .

A similar argument shows that

U(t)1−p′ = n|S|at(na−1).
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With these expressions for U and V , inequality (2.8) becomes(∫ ∞
0

∣∣∣∣∫ s

0

F (t) dt
∣∣∣∣q s−1−naq/p′ ds

)1/q

≤ (na)−1/q−1/p′C

(∫ ∞
0

|F (t)|pt(na−1)(1−p) dt

)1/p

.

By Proposition 2.3, with a replaced by na, the smallest constant C for which this

holds is C = Bp,q. This completes the proof.

Remarks.

1. By these methods it is easy to see that Theorem 2.4 gives all the inequalities with

“power” weights. More precisely, if inequality (2.1) holds for v(x) = |Sx|β and

u(y) = |Sy|γ for some β and γ then p ≤ q, β = −1−aq/p′, and γ = (a−1)(1−p)

for some a > 0.

2. If Sx is taken to be the ball of radius |x| centred at the origin then the case p ≤ q

of Theorem 2.1 reduces to Theorem 2.1 of [4]. The case q < p of Theorem 2.1

essentially extends Theorem 2.2 of [4] by allowing q to be in (0, 1). Although

the weight condition (2.9) of [4] is different in form than the one given here,

integration by parts shows that they coincide (up to a constant) in the case

1 < q < p.

3. If Sx is taken to be the ball of radius |x| centred at the origin, p = q, and a = 1

then Theorem 2.4 reduces to Theorem 1 of [3].

4. The condition that S be smoothly starshaped can be considerably weakened. All

that is required of a starshaped region S for these arguments to be valid is that

integration on Rn can be transformed to a kind of “polar” coordinates where

instead of spherical shells we use the boundaries of dilations of S.

3. Averages over balls

In this section we consider averages over the family of all balls in Rn having the
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origin on their boundary.

Definition 3.1. For each x ∈ Rn set

Bx = {y ∈ Rn : |y − x| < |x|}.

The inequality that we will concern ourselves with is the following.(∫
Rn

∣∣∣∣∫
Bx

f(y) dy
∣∣∣∣q v(x) dx

)1/q

≤ C
(∫

Rn

|f(y)|pu(y) dy
)1/p

, (3.1)

for radial weights u and v.

Theorem 3.2. Suppose 1 < q ≤ p, 1 < p < ∞, and u and v are radial weight

functions on Rn. The inequality (3.1) holds for all locally integrable functions f if

and only either

p = q and

sup
ρ>0

(∫
|y|<ρ

(ρ− |y|)p
′(n−1)/2u(y)1−p′ dy

)1/p′ (∫
|2x|>ρ

|x|−p(n−1)/2v(x) dx

)1/p

,

sup
ρ>0

(∫
|y|<ρ

u(y)1−p′ dy

)1/p′ (∫
|2x|>ρ

(1− ρ/|2x|)p(n−1)/2v(x) dx

)1/p

are both finite, or

q < p, 1/r = 1/q − 1/p, and∫
Rn

(∫
|y|<|z|

u(y)1−p′ dy

)r/q′
×

(∫
|2x|>|z|

(1− |z|/|2x|)q(n−1)/2v(x) dx

)r/q
u(z)1−p′ dz

1/r

,

∫
Rn

(∫
|y|<|z|

(|z| − |y|)p
′(n−1)/2u(y)1−p′ dy

)r/p′
×

(∫
|2x|>|z|

|x|−q(n−1)/2v(x) dx

)r/p
|z|−q(n−1)/2v(z) dz

1/r
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are both finite.

The proof relies on the reduction of this problem to a known one-dimensional

weighted norm inequality, although this time the one-dimensional inequality is not

simply a Hardy inequality. To identify the one-dimensional operator that arises

we must investigate the following integral which represents the n − 1 dimensional

surface area of a generalized arc, the intersection of a sphere and ball in Rn.

Definition 3.3. Let σ ∈ Ω.

A(t) =
∫

Ω

χ
Bσ (2tτ) dτ.

Note that A does not depend on the choice of σ ∈ Ω and that A(t) = 0 for t ≥ 1.

Lemma 3.4. For any σ, τ ∈ Ω,

∫
Ω

χ
Bsσ (tτ) dτ = A(t/2s) =

∫
Ω

χ
Bsσ (tτ) dσ.

Proof. By Definition 3.1, tτ ∈ Bsσ means |tτ −sσ| < s. Dividing by s this becomes

|(t/s)τ − σ| < 1 which is just (t/s)τ ∈ Bσ. Thus

∫
Ω

χ
Bsσ (tτ) dτ =

∫
Ω

χ
Bσ ((t/s)τ) dτ = A(t/2s),

the first part of the lemma.

Using Definition 3.1 again we have tτ ∈ Bsσ if and only if t2− 2tsτ ·σ+ s2 < s2.

Interchanging τ and σ has no effect on this condition so it is also equivalent to

tσ ∈ Bsτ . Therefore

∫
Ω

χ
Bsσ (tτ) dσ =

∫
Ω

χ
Bsτ (tσ) dσ = A(t/2s).

where the last equality is just the first part of the lemma with σ and τ interchanged.
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The first step in showing that an n-dimensional inequality is essentially one-

dimensional is to identify a small class of functions over which it is sufficient to

test the inequality. In the next theorem we reduce the inequality (3.1) to a one-

dimensional inequality and the key observation is that it holds for all functions f

if and only if it holds when f is radial.

We will regularly pass to and from polar coordinates with the changes of variable

x = sσ, y = tτ, and z = ρω, (3.2)

x, y, z ∈ Rn \ {0}, s, t, ρ ∈ (0,∞), and σ, τ, ω ∈ Ω.

Theorem 3.5. Suppose that 1 < q ≤ p, 1 < p < ∞, and u and v are radial

weight functions. Then inequality (3.1) holds for all locally integrable functions

f : Rn → R if and only if the inequality(∫ ∞
0

∣∣∣∣∫ 2s

0

A(t/2s)F (t)tn−1 dt

∣∣∣∣q v(s)sn−1 ds

)1/q

≤ C|Ω|1/p−1/q

(∫ ∞
0

|F (t)|pu(t)tn−1 dt

)1/p

(3.3)

holds for all locally integrable functions F : (0,∞) → R. In particular the best

constants C in inequalities (3.1) and (3.3) coincide.

Proof. Suppose that (3.1) holds and fix F : (0,∞)→ R. Introduce an integral over

Ω into the left hand side of (3.3) and use the fact that v is radial to get(∫ ∞
0

∣∣∣∣∫ 2s

0

A(t/2s)F (t)tn−1 dt

∣∣∣∣q v(s)sn−1 ds

)1/q

=

(∫ ∞
0

|Ω|−1

∫
Ω

∣∣∣∣∫ 2s

0

A(t/2s)F (t)tn−1 dt

∣∣∣∣q v(sσ) dσsn−1 ds

)1/q

=

(∫ ∞
0

|Ω|−1

∫
Ω

∣∣∣∣∫ 2s

0

∫
Ω

χ
Bsσ (tτ) dτF (t)tn−1 dt

∣∣∣∣q v(sσ) dσsn−1 ds

)1/q
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where the second equality uses Lemma 3.4. Continue by changing variables via

(3.2) to get

|Ω|−1/q

(∫
Rn

∣∣∣∣∫
Bx

F (|y|) dy
∣∣∣∣q v(x) dx

)1/q

.

Now (3.1) with f(y) replaced by F (|y|) shows that the last expression is no greater

than

C|Ω|−1/q

(∫
Rn

|F (|y|)|pu(y) dy
)1/p

= C|Ω|1/p−1/q

(∫ ∞
0

|F (t)|pu(t)tn−1 dt

)1/p

where the last equality is a change of variable again. This establishes (3.3)

Conversely, suppose that (3.3) holds. Fix a function f and set

F (t) =
(∫

Ω

|f(tτ)|q dτ
)1/q

.

Make the substitutions (3.2) in the left hand side of (3.1) and use Minkowski’s

integral inequality to get(∫
Rn

∣∣∣∣∫
Bx

f(y) dy
∣∣∣∣q v(x) dx

)1/q

=

(∫ ∞
0

∫
Ω

∣∣∣∣∫ 2s

0

∫
Ω

f(tτ)χBsσ (tτ) dτtn−1 dt

∣∣∣∣q dσv(s)sn−1 ds

)1/q

≤

(∫ ∞
0

∣∣∣∣∣
∫ 2s

0

(∫
Ω

∣∣∣∣∫
Ω

f(tτ)χBsσ (tτ) dτ
∣∣∣∣q dσ)1/q

tn−1 dt

∣∣∣∣∣
q

v(s)sn−1 ds

)1/q

.

Use Hölder’s inequality and Lemma 3.4 to estimate the innermost integral.∣∣∣∣∫
Ω

f(tτ)χBsσ (tτ) dτ
∣∣∣∣q ≤(∫

Ω

χ
Bsσ (tτ) dτ

)q/q′ ∫
Ω

|f(tτ)|qχBsσ (tτ) dτ

=A(t/2s)q/q
′
∫

Ω

|f(tτ)|qχBsσ (tτ) dτ.

This estimate, and another application of Lemma 3.4, yield∫
Ω

∣∣∣∣∫
Ω

f(tτ)χBsσ (tτ) dτ
∣∣∣∣q dσ ≤∫

Ω

A(t/2s)q/q
′
∫

Ω

|f(tτ)|qχBsσ (tτ) dτ dσ

=A(t/2s)q/q
′
∫

Ω

|f(tτ)|q
∫

Ω

χ
Bsσ (tτ) dσ dτ

=A(t/2s)q
∫

Ω

|f(tτ)|q dτ = A(t/2s)qF (t)q.
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Using this inequality and the hypothesis (3.3), deduce the inequality (3.1) to com-

plete the proof.(∫
Rn

∣∣∣∣∫
Bx

f(t) dt
∣∣∣∣q v(x) dx

)1/q

≤

(∫ ∞
0

∣∣∣∣∫ 2s

0

A(t/2s)F (t)tn−1 dt

∣∣∣∣q v(s)sn−1 ds

)1/q

≤C|Ω|1/p−1/q

(∫ ∞
0

|F (t)|pu(t)tn−1 dt

)1/p

=C|Ω|1/p−1/q

(∫ ∞
0

(∫
Ω

|f(tτ)|q dτ
)p/q

u(t)tn−1 dt

)1/p

≤C|Ω|1/p−1/q

(∫ ∞
0

(∫
Ω

|f(tτ)|p dτ
)(∫

Ω

dτ

)(p−q)/q

u(t)tn−1 dt

)1/p

=C
(∫

Rn

|f(y)|pu(y) dy
)1/p

.

The last inequality here is Hölder’s inequality with indices p/q and p/(p− q)

The reduction of inequality (3.1) to a one-dimensional inequality is complete.

We now use known results to give a weight characterisation for (3.3) which will

finish the proof of Theorem 3.2. The following lemma examines the kernel of the

integral operator in (3.3), showing that it is bounded above and below by a certain

power function. This will enable us to reduce (3.3) to a weighted inequality for a

Riemann-Liouville fractional integral operator.

Lemma 3.6. Let α denote the n−2 dimensional volume of the unit sphere in Rn−1.

Then

A(t) = α

∫ 1

t

(1− s2)(n−3)/2 ds ≈ (1− t)(n−1)/2.

Proof. Let Ω′ denote the unit sphere in Rn−1 and recall the induction step in the

development of spherical polar coordinates.

A(t) =
∫

Ω

χ
Bσ (2tτ) dτ =

∫
Ω′

∫ π

0

χ
Bσ (2t(cos θ, ω sin θ)) sinn−2 θ dθ dω.
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Because A(t) is independent of σ in Ω, we may take σ = (1, 0, . . . , 0) ∈ Ω. The

characteristic function above is 1 provided |2t(cos θ, ω sin θ)− σ| < 1, that is, when

(2t cos θ− 1)2 + 4t2 sin2 θ|ω|2 < 1. Since ω ∈ Ω′, |ω| = 1 so this condition simplifies

to θ < cos−1 t. Therefore

A(t) =
∫

Ω′

∫ cos−1 t

0

sinn−2 θ dθ dω = α

∫ cos−1 t

0

sinn−2 θ dθ.

Making the substitution s = cos θ we have

A(t) = α

∫ 1

t

(1− s2)(n−3)/2 ds,

giving the first part of the lemma. Since 0 ≤ s ≤ 1, 1 ≤ 1 + s ≤ 2 so 1 − s2 =

(1 + s)(1− s) ≈ 1− s. Therefore

A(t) ≈ α
∫ 1

t

(1− s)(n−3)/2 ds = (2α/(n− 1))(1− t)(n−1)/2,

which yields the second part of the lemma.

Proof of Theorem 3.2. Our object, in view of Theorem 3.5, is to show that the

weight conditions of Theorem 3.2 are necessary and sufficient for the inequality

(3.3). In order to cast (3.3) in the form of a Riemann-Liouville operator we first

replace s by s/2 and then apply Lemma 3.6 to show that (3.3) is equivalent to(∫ ∞
0

∣∣∣∣∫ s

0

(1− t/s)(n−1)/2F (t)tn−1 dt

∣∣∣∣q v(s/2)(s/2)n−1 ds

2

)1/q

≤ C|Ω|1/p−1/q

(∫ ∞
0

|F (t)|pu(t)tn−1 dt

)1/p

.

Now, multiply and divide by s(n−1)/2 on the left hand side and replace F (t) by

G(t)/tn−1. The inequality becomes the weighted Riemann-Liouville inequality(∫ ∞
0

∣∣∣∣∫ s

0

(s− t)(n−1)/2G(t) dt
∣∣∣∣q s−q(n−1)/2v(s/2)(s/2)n−1 ds

2

)1/q

≤ C|Ω|1/p−1/q

(∫ ∞
0

|G(t)|pu(t)(tn−1)1−p dt

)1/p

.
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Apply the results of Stepanov [10] to show that this last inequality holds for all

locally integrable G if and only if

p = q, and

sup
ρ>0

(∫ ρ

0

(ρ− t)p
′(n−1)/2u(t)1−p′tn−1 dt

)1/p′(∫ ∞
ρ

s(1−p/2)(n−1)v(s/2)2−n ds
)1/p

,

sup
ρ>0

(∫ ρ

0

u(t)1−p′tn−1 dt

)1/p′(∫ ∞
ρ

(s− ρ)p(n−1)/2s(1−p/2)(n−1)v(s/2)2−n ds
)1/p

are both finite, or, q < p and(∫ ∞
0

(∫ ρ

0

tn−1u(t)1−p′ dt

)r/q′
×

(∫ ∞
ρ

(s− ρ)q(n−1)/2s−q(n−1)/2v(s/2)(s/2)n−1 ds

2

)r/q
ρn−1u(ρ)1−p′ dρ

)1/r

,

(∫ ∞
0

(∫ ρ

0

(ρ− t)p
′(n−1)/2tn−1u(t)1−p′ dt

)r/p′
×

(∫ ∞
ρ

s−q(n−1)/2v(s/2)(s/2)n−1 ds

2

)r/p
ρ−q(n−1)/2v(ρ/2)(ρ/2)n−1 dρ

2

)1/r

are both finite.

To complete the proof we replace s by 2s in the two conditions and introduce

integrals over Ω in all integrals to return the variables x, y, and z. It is a straightfor-

ward matter to reduce the expressions above to (multiples of) those in the statement

of Theorem 3.2.

Remark. The analogue of Theorem 3.2 in the case q > p remains an open question.

4. Back to One Dimension

We have reduced n-dimensional inequalities to one-dimensional ones in order to

give weight characterisations for them. In this section we look at special cases of our
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n-dimensional inequalities and interpret them as new one-dimensional inequalities.

In this process something is gained and something is lost. We gain inequalities for

integral operators with a wide range of kernels but because we are specializing, the

weight conditions we give are sufficient but probably not necessary.

The inequalities are deduced from Theorem 2.1 with n = 2 and specially chosen

regions Sx by restricting our attention to functions on R2 which depend only on

the first variable. The regions Sx will depend on the function ϕ as in the following

definition.

Definition 4.1. Suppose ϕ : [0, 1]→ R is a decreasing, continuously differentiable

function with ϕ(0) = 1 and ϕ(1) = 0. Define

S = {(x1, x2) : 0 < x1 ≤ 1, 0 ≤ x2 ≤ x1ϕ(x1)}

Lemma 4.2. S is smoothly starshaped and E, the union of all dilations of S, is

equal to

{(x1, x2) : 0 < x1, 0 ≤ x2 < x1}. (4.1)

For x = (x1, x2) ∈ E, Sx, the least dilation of S that contains x, is αxS, where αx

satisfies x2 = x1ϕ(x1/αx).

Proof. Let ψ(x1, x2) = ϕ−1(x2/x1)(1 + (x2/x1)2)1/2 when x1 and x2 are positive

and let ψ(x1, x2) = 0 otherwise. It is easily checked that S = {x ∈ R2 \ {0} : |x| ≤

ψ(x/|x|)} so S is smoothly starshaped.

If (x1, x2) ∈ αS with α > 0 then 0 ≤ x1/α and hence 0 ≤ x1. Also 0 ≤

x2/α ≤ (x1/α)ϕ(x1/α) so 0 ≤ x2 ≤ x1ϕ(x1/α) < x1ϕ(0) = x1. Thus (x1, x2) is in

(4.1). Conversely, if (x1, x2) is in (4.1) then for sufficiently large α we have both

0 ≤ x1/α ≤ 1 and 0 ≤ x2/α ≤ (x1/α)ϕ(x1/α) so (x1, x2) ∈ E.
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The least dilation of S that contains the point (x1, x2) is the unique α for which

(x1/α, x2/α) is on the graph of x1ϕ(x1). Thus x2 = x1ϕ(x1/αx). This completes

the proof.

Theorem 4.3. Suppose 0 < q <∞, 1 < p <∞ and let ϕ be as in Definition 4.1.

There exists a constant C such that the inequality(∫ ∞
0

(∫ x

0

ϕ(y/x)f(y) dy
)q

v(x) dx
)1/q

≤ C
(∫ ∞

0

|f(y)|pu(y) dy
)1/p

holds for all f , provided either

p ≤ q and

sup
t>0

(∫ t

0

ϕ(y/t)u(y)1−p′ dy

)1/p′ (∫ ∞
t

v(x) dx
)1/q

<∞,

or q < p, 1/r = 1/q − 1/p, and(∫ ∞
0

(∫ t

0

ϕ(y/t)u(y)1−p′ dy

)r/p′ (∫ ∞
t

v(x) dx
)r/p

v(t) dt

)1/r

<∞.

Proof. We wish to apply Theorem 2.1 with S as in Definition 4.1 and weights U

and V defined by U(y1, y2) = yp−1
1 u(y1) and V (x1, x2) = v(x1)δ0(x2) where δ0 is

the measure on R consisting of a single atom of weight 1 at 0. Because the constant

C in Theorem 2.1 is controlled by the value of K or D it is straightforward to show

that the theorem holds for this V by applying it to weights Vn(x1, x2) = v(x1)ξn(x2)

for some approximate identity {ξn}. We omit the details.

The weight condition of Theorem 2.1 in the case p ≤ q is

K ≡ sup
z∈E\{0}

(∫
Sz

U(y)1−p′ dy

)1/p′
(∫

E\Sz
V (x) dx

)1/q

<∞.

With α = αz, and applying Lemma 4.2, we have

K = sup
α>0

(∫ α

0

∫ y1ϕ(y1/α)

0

y−1
1 u(y1)1−p′ dy2dy1

)1/p′ (∫ ∞
α

v(x1) dx1

)1/q

= sup
α>0

(∫ α

0

ϕ(y1/α)u(y1)1−p′ dy1

)1/p′ (∫ ∞
α

v(x1) dx1

)1/q

.
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The weight condition in the case q < p is

D ≡

∫
E

(∫
Sz

U(y)1−p′ dy

)r/p′ (∫
E\Sz

V (x) dx

)r/p
V (z) dz

1/r

<∞.

D becomes∫ ∞
0

(∫ z1

0

∫ y1ϕ(y1/z1)

0

y−1
1 u(y1)1−p′ dy2dy1

)r/p′(∫ ∞
z1

v(x1) dx1

)r/p
v(z1) dz1

1/r

=

(∫ ∞
0

(∫ z1

0

ϕ(y1/z1)u(y1)1−p′ dy1

)r/p′ (∫ ∞
z1

v(x1) dx1

)r/p
v(z1) dz1

)1/r

.

Thus the conditions of Theorem 2.1 reduce to the hypotheses of the present theorem.

The inequality guaranteed by Theorem 2.1 is(∫
E

∣∣∣∣∫
Sx

f(y) dy
∣∣∣∣q V (x) dx

)1/q

≤ C
(∫

E

|f(y)|pU(y) dy
)1/p

which, if we restrict f to depend only on the first variable, becomes(∫ ∞
0

(∫ x1

0

ϕ(y1/x1)y1f(y1) dy1

)q
v(x1) dx1

)1/q

≤ C
(∫ ∞

0

∫ y1

0

|f(y1)|pyp−1
1 u(y1) dy1

)1/p

= C

(∫ ∞
0

|y1f(y1)|pu(y1) dy1

)1/p

.

Replacing y1f(y1) by f(y1) completes the proof.

Remark. A weight characterisation in the case p ≤ q has been given in [7] for

the inequality of Theorem 4.3 without the endpoint conditions on ϕ but under

the additional assumption that for some D > 0, ϕ(ab) ≤ D(ϕ(a) + ϕ(b)) for all

a, b ∈ (0, 1).

Applying the above theorem with ϕ(s) = (1− s)k−1 gives a sufficient condition

for the Riemann-Liouville fractional integral operators since for this ϕ,∫ x

0

ϕ(y/x)f(y) dy = x1−k
∫ x

0

(x− y)k−1f(y) dy.
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Corollary 4.4. Suppose 0 < q < ∞, 1 < p < ∞ and let k be a real number

greater than 1. There exists a constant C such that the weighted Riemann-Liouville

inequality(∫ ∞
0

(∫ x

0

(x− y)k−1f(y) dy
)q

v(x) dx
)1/q

≤ C
(∫ ∞

0

|f(y)|pu(y) dy
)1/p

holds for all f provided either

p ≤ q and

sup
t>0

(∫ t

0

(1− y/t)k−1u(y)1−p′ dy

)1/p′ (∫ ∞
t

xq(k−1)v(x) dx
)1/q

is finite, or

q < p, 1/r = 1/q − 1/p, and(∫ ∞
0

(∫ t

0

(1− y/t)k−1u(y)1−p′ dy

)r/p′(∫ ∞
t

xq(k−1)v(x) dx
)r/p

tq(k−1)v(t) dt

)1/r

is finite.

Examples. Example 10.13 in [8] is easily adapted to show that the sufficient con-

dition given in Corollary 4.4 is not necessary.

A simple estimate shows that the condition of Corollary 4.4 is easier to satisfy

than the similar condition given in Theorem 10.11 of [8]. Also, one can check that

Corollary 4.4 implies the inequality∫ ∞
0

∣∣∣∣∫ x

0

(x− y)f(y) dy
∣∣∣∣2 e−x dxx ≤ C

∫ ∞
0

|f(y)|2e−y dy,

but Theorem 10.11 of [8] does not.

Remark. In the case 0 < q < 1 necessary and sufficient conditions are not available

for the Riemann-Liouville operators but our sufficient conditions have a different

form than those in [8, Theorem 10.11] or those that follow from [10, Theorem 3].

If we imitate the proof of Theorem 4.3, replacing the interval (0, 1) with the

smoothly starshaped subset S of Rn we get the following result. The details of

proof are omitted.
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Theorem 4.5. Let S be a smoothly starshaped subset of Rn and let B and αx be

as in Section 2. Suppose 0 < q < ∞, 1 < p < ∞ and let ϕ : S → [0, 1] be radially

decreasing, continuously differentiable, and satisfy ϕ(0) = 1, ϕ(σ) = 0 for σ ∈ B.

Then there exists a constant C such that the inequality

(∫
E

(∫
Sx

ϕ(y/αx)f(y) dy
)q

v(x) dx
)1/q

≤ C
(∫

E

|f(y)|pu(y) dy
)1/p

holds for all f provided either

p ≤ q and

sup
z∈E\{0}

(∫
Sz

ϕ(y/αz)u(y)1−p′ dy

)1/p′
(∫

E\Sz
v(x) dx

)1/q

<∞,

or q < p, 1/r = 1/q − 1/p, and∫
E

(∫
Sz

ϕ(y/αz)u(y)1−p′ dy

)r/p′ (∫
E\Sz

v(x) dx

)r/p
v(z) dz

1/r

<∞.

Remark. The appearance of αx in the above theorem is unfortunate since it may

be difficult to calculate for some regions S. On the other hand, it is often a simple

function of x. If S is the unit ball, for example, then αx = |x|.
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