Applied Mathematics Ph.D. Comprehensive Examination

22 May 2023
Part I: 9:00 am - 12:00 pm
Instructions: The comprehensive exam consists of two parts. This is Part I. Part I consists of mandatory problems and covers basic material. In Part I, $\mathbf{8 0 \%}$ is required for a passing grade.

You may use a calculator, pen, and pencil. NO other aids are allowed. Your calculator must NOT be capable of wireless communication or capable of storing and displaying large text files.

PART I: Do ALL of the questions in the following four sections.

Linear Algebra

LA1. Consider the matrix $A=\left(\begin{array}{cc}5 & -3 \\ 6 & -4\end{array}\right)$ and compute
(a) the eigenvalues of A
(b) a basis for each eigenspace of A, and
(c) a diagonal matrix D and invertible matrix X such that $A=X D X^{-1}$

LA2. Find a basis for the subspace of \mathbb{R}^{4} of all vectors perpendicular to both

$$
v=(1,1,0,0) \quad \text { and } \quad w=(1,2,3,4)
$$

LA3. (True or False) The set of invertible $n \times n$ matrices forms a vector subspace of the vector space of $n \times n$ matrices.

Calculus

CA1. Find $\lim _{x \rightarrow 0} \frac{\int_{0}^{x}\left(e^{t^{2}}-1+t^{2}\right)^{2} d t}{x^{4} \sin x}$.
CA2. Suppose $\frac{\sin x}{x}$ is an anti-derivative of $f(x)$, evaluate $\int x^{3} f^{\prime}(x) d x$.
CA3. Consider the power series $\sum_{n=0}^{\infty} \frac{1}{2 n+1}\left(\frac{x-1}{x+1}\right)^{2 n+1}$.
(a) Determine the interval of convergence.
(b) Find a formula for the sum function of this power series in the interval of convergence.

Numerical Methods

NA1. Consider the smooth function $f(x)$ whose graph is shown in the Figure where $f(x)$ has asymptotes $y= \pm 1$, is increasing on $-1.2<x<1.2$ and decreasing elsewhere.

(a) Approximately locate the one solution of $f(x)=0$ using the graph. Illustrate the first 2 Newton steps starting with initial point $x=x_{0}=1$ by sketching on on a copy of the graph. Label x_{1} and x_{2} on your graph.
(b) Why do we expect Newton's iteration to converge for initial points sufficiently close to the approximate solution in (a)?
(c) Give some approximate intervals in x where Newton iteration will diverge when starting from an initial point in these intervals.
(d) Briefly, why is Newton's method for solving $f(x)=0$ a consequence of Taylor's formula:

$$
f(x+\Delta x)=f(x)+D(f)(x) \Delta x+O(2)
$$

Briefly explain why this argument generalizes to systems of two equations in two variables by vectorizing (replacing x and $f(x)$ with vectors \mathbf{x} and \mathbf{f}). What is $\mathbf{D}(\mathbf{f})(\mathbf{x})$ in this case?

NA2. Let $A=\left[\begin{array}{ll}\epsilon & 3 \\ 2 & 4\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $0<\epsilon \ll 1$ (i.e. ϵ is much smaller than 1).
(a) Show that reducing the system $A \mathbf{v}=\mathbf{b}$ by naive Gauss elimination (with no row changes) on the augmented matrix $[A \mid \mathbf{b}]$ yields

$$
\left[\begin{array}{cc|c}
\epsilon & 3 & 3 \\
0 & \left(4-\frac{6}{\epsilon}\right) & \left(2-\frac{6}{\epsilon}\right)
\end{array}\right]
$$

(b) Show that working in any fixed precision by taking $\epsilon>0$ sufficiently small the augmented matrix in (a) leads to the approximate solution $x_{1} \approx 0, x_{2} \approx 1$ where $\mathbf{v}=\left[x_{1}, x_{2}\right]^{T}$.
(c) Calculate the backward error of the approximate solution $x_{1} \approx 0, x_{2} \approx 1$. Note that the backward error is very large. However you can assume that condition number of A is approximately $8 / 3$. What does this imply about the method used in (a)-(b)?
(d) Use an alternative approach to (a)-(b) which in finite precision arithmetic yields an approximate solution of $A \mathbf{v}=\mathrm{b}$ with small backward error.

Ordinary Differential Equations

ODE1. Find the general solution to $t^{3} y^{\prime}+4 t^{2} y=e^{-t}$ with $t>0$.
ODE2. Find the general solution to $y^{(4)}-4 y^{\prime \prime}-5 y=7$.
ODE3. Consider $2 y^{\prime \prime}+x y^{\prime}+3 y=0$, and the point $x_{0}=0$. Find the recurrence relation for the coefficients of the power series solution.
ODE4. Let T be the temperature of a cup of coffee in a $70^{\circ} \mathrm{F}$ room. The coffee's temperature changes in proportion to the difference between its temperature and the room temperature. Write a differential equation for $d T / d t$, and solve the equation. Assume the constant of proportionality is k, and that the coffee is initially $200^{\circ} \mathrm{F}$.

