THE UNIVERSITY OF WESTERN ONTARIO London Ontario

Applied Mathematics Ph.D. Comprehensive Examination

22 May 2023 Part I: 9:00 am - 12:00 pm

Instructions: The comprehensive exam consists of two parts. This is Part I. Part I consists of mandatory problems and covers basic material. In Part I, 80% is required for a passing grade.

You may use a calculator, pen, and pencil. NO other aids are allowed. Your calculator must NOT be capable of wireless communication or capable of storing and displaying large text files.

PART I: Do ALL of the questions in the following four sections.

Linear Algebra

LA1. Consider the matrix
$$A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$$
 and compute

- (a) the eigenvalues of A
- (b) a basis for each eigenspace of A, and
- (c) a diagonal matrix D and invertible matrix X such that $A = XDX^{-1}$
- LA2. Find a basis for the subspace of \mathbb{R}^4 of all vectors perpendicular to both

v = (1, 1, 0, 0) and w = (1, 2, 3, 4).

LA3. (True or False) The set of invertible $n \times n$ matrices forms a vector subspace of the vector space of $n \times n$ matrices.

Calculus

CA1. Find $\lim_{x\to 0} \frac{\int_0^x (e^{t^2} - 1 + t^2)^2 dt}{x^4 \sin x}$. CA2. Suppose $\frac{\sin x}{x}$ is an anti-derivative of f(x), evaluate $\int x^3 f'(x) dx$. CA3. Consider the power series $\sum_{n=0}^\infty \frac{1}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1}$.

- (a) Determine the interval of convergence.
- (b) Find a formula for the sum function of this power series in the interval of convergence.

Numerical Methods

NA1. Consider the smooth function f(x) whose graph is shown in the Figure where f(x) has asymptotes $y = \pm 1$, is increasing on -1.2 < x < 1.2 and decreasing elsewhere.

- (a) Approximately locate the one solution of f(x) = 0 using the graph. Illustrate the first 2 Newton steps starting with initial point $x = x_0 = 1$ by sketching on on a copy of the graph. Label x_1 and x_2 on your graph.
- (b) Why do we expect Newton's iteration to converge for initial points sufficiently close to the approximate solution in (a)?
- (c) Give some approximate intervals in x where Newton iteration will diverge when starting from an initial point in these intervals.
- (d) Briefly, why is Newton's method for solving f(x) = 0 a consequence of Taylor's formula:

$$f(x + \Delta x) = f(x) + D(f)(x)\Delta x + O(2)$$

Briefly explain why this argument generalizes to systems of two equations in two variables by vectorizing (replacing x and f(x) with vectors x and f). What is D(f)(x) in this case?

NA2. Let
$$A = \begin{bmatrix} \epsilon & 3 \\ 2 & 4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $0 < \epsilon \ll 1$ (i.e. ϵ is much smaller than 1).

(a) Show that reducing the system $A\mathbf{v} = \mathbf{b}$ by naive Gauss elimination (with no row changes) on the augmented matrix $[A|\mathbf{b}]$ yields

$$\left[\begin{array}{c|c} \epsilon & 3 & 3\\ 0 & \left(4 - \frac{6}{\epsilon}\right) & \left(2 - \frac{6}{\epsilon}\right) \end{array}\right]$$

- (b) Show that working in any fixed precision by taking $\epsilon > 0$ sufficiently small the augmented matrix in (a) leads to the approximate solution $x_1 \approx 0$, $x_2 \approx 1$ where $\mathbf{v} = [x_1, x_2]^T$.
- (c) Calculate the backward error of the approximate solution $x_1 \approx 0$, $x_2 \approx 1$. Note that the backward error is very large. However you can assume that condition number of A is approximately 8/3. What does this imply about the method used in (a)-(b)?
- (d) Use an alternative approach to (a)-(b) which in finite precision arithmetic yields an approximate solution of $A\mathbf{v} = \mathbf{b}$ with small backward error.

Ordinary Differential Equations

- ODE1. Find the general solution to $t^3y' + 4t^2y = e^{-t}$ with t > 0.
- ODE2. Find the general solution to $y^{(4)} 4y'' 5y = 7$.
- ODE3. Consider 2y'' + xy' + 3y = 0, and the point $x_0 = 0$. Find the recurrence relation for the coefficients of the power series solution.
- ODE4. Let T be the temperature of a cup of coffee in a 70°F room. The coffee's temperature changes in proportion to the difference between its temperature and the room temperature. Write a differential equation for dT/dt, and solve the equation. Assume the constant of proportionality is k, and that the coffee is initially 200°F.