
                                                 Access Provided by Western Ontario, Univ of at 02/01/13  8:14AM GMT



GEOMETRIC AUSLANDER CRITERION FOR FLATNESS

By JANUSZ ADAMUS, EDWARD BIERSTONE, and PIERRE D. MILMAN

Abstract. Our aim is to understand the algebraic notion of flatness in explicit geometric terms. Let
ϕ :X→ Y be a morphism of complex-analytic spaces, where Y is smooth. We prove that nonflatness
of ϕ is equivalent to a severe discontinuity of the fibres—the existence of a vertical component (a local
irreducible component at a point of the source whose image is nowhere-dense in Y )—after passage
to the n-fold fibred power of ϕ, where n = dimY . Our main theorem is a more general criterion for
flatness over Y of a coherent sheaf of modules F onX . In the case that ϕ is a morphism of complex
algebraic varieties, the result implies that the stalk Fξ ofF at a point ξ ∈X is flat overR :=OY,ϕ(ξ)

if and only if its n-fold tensor power is a torsion-free R-module (conjecture of Vasconcelos in the case
of C-algebras).
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1. Introduction. Flatness is a subtle algebraic notion that expresses con-
tinuity of the fibres of a mapping, and therefore the idea of a family of varieties
parametrized by a given variety Y . But flatness has remained geometrically elu-
sive because “it depends on infinitesimal data which are frequently invisible at the
level of topology” (Kollár [16]). This article is a contribution towards attempts to
understand flatness in geometric terms. The following is a special case of our main
result (see Theorem 1.9 and Corollary 1.10).

THEOREM 1.1. Letϕ :X→ Y denote a morphism of complex-analytic spaces,
where Y is smooth, and let ξ ∈ X. Let ϕ{n} : X{n} → Y denote the induced
morphism from the n-fold fibred power of X over Y , where n = dimY , and let
ξ{n} ∈X{n} denote the diagonal point corresponding to ξ. Then ϕ is not flat at ξ
if and only if ϕ{n} has a vertical component at ξ{n}; i.e., a local irreducible com-
ponent (perhaps embedded) ofX{n} at ξ{n} whose image is nowhere-dense in Y .
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Theorem 1.9 and Corollary 1.10 provide a more general criterion for OY -
flatness of a coherent sheaf of OX-modules. The theorem is an extension of a
result of Galligo and Kwieciński [11].

Our work is of origin in M. Auslander’s criterion for freeness of a finitely
generated module over a regular local ring:

THEOREM 1.2. [5, Thm. 3.2] LetR be a regular local ring of dimension n> 0,
and let F be a finite R-module. Then F is R-free if and only if the n-fold tensor
power F⊗n

R is a torsion-free R-module.

(Theorem 1.2 was proved in the case that R is unramified by Auslander, and
extended to arbitrary regular local rings by Lichtenbaum [19].)

Flat is the appropriate analogue of free for modules that are not necessarily
finitely generated—“flatness . . . [embodies] that part of freeness which can be ex-
pressed in terms of linear equations” (Mumford [21]). Flat is equivalent to free
for finite modules over a local ring. Vasconcelos [22] and Kwieciński [18] were
the first to consider extending Auslander’s criterion from finite modules to finite
algebras over a regular local ring.

We use our main theorem to prove the following result—a generalization of
Vasconcelos’s conjecture [22, Conj. 6.2], [23, Conj. 2.6.1] in the case of C-algebras
(see Section 1.2).

THEOREM 1.3. LetR be a regular C-algebra of finite type. LetA denote anR-
algebra essentially of finite type, and let F denote a finitely generated A-module.
Then F is R-flat if and only if the n-fold tensor power F⊗n

R is a torsion-free R-
module, where n= dimR.

An R-algebra essentially of finite type means a localization of an R-algebra of
finite type.

Remark 1.4. By Theorem 1.3 and the prime avoidance lemma [8, Lemma 3.3],
in order to verify that F is not R-flat, it is enough to find an associated prime of
F⊗n

R in A⊗n
R which contains a nonzero element r ∈R. Thus Theorem 1.3 together

with Gröbner-basis algorithms for primary decomposition (see [23] or [13]) pro-
vides a tool for checking flatness by effective computation.

Frisch’s generic flatness theorem [10, Prop. VI,14] plays an important part in
the proof of our main theorem, in the proof of verticality of torsion modules [11,
Prop. 4.5] (see Proposition 3.1(4) below)—a property which is immediate in the
case of finitely generated modules over an integral domain.

The assertion of Theorem 1.3 for any field of characteristic zero follows from
Theorem 1.3 as stated, using the Tarski-Lefschetz Principle (see [3, Thm. 2.1]).
L. Avramov and S. Iyengar have more recently proved Theorem 1.3 for an ar-
bitrary field [6]. In a subsequent paper [4], we prove another geometric flatness
criterion using techniques which differ from but share a common approach with
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those here—successive reduction in fibre dimension via Weierstrass preparation,
to eventually reduce the problem to a question about flatness of finitely generated
modules that is well-understood. The inductive criterion is a convenient tool to
prove generic flatness results like Frisch’s theorem.

1.1. Vertical components in fibred powers. Kwieciński [18] proved that,
if R is a finitely generated C-algebra which is a normal domain and A is a finitely
generated R-algebra, then A is R-flat if and only if all tensor powers A⊗k

R are
R-torsion-free. He used techniques of complex-analytic geometry, introducing the
idea of a vertical component of an analytic mapping as a geometric analogue of
torsion in commutative algebra. Following [1], we distinguish algebraic and geo-
metric versions of Kwieciński’s idea: Let ϕξ : Xξ → Yη denote a morphism of
germs of complex-analytic spaces.

Definition 1.5. LetWξ denote an irreducible component ofXξ (isolated or em-
bedded). We say thatWξ is an algebraic (respectively, geometric) vertical compo-
nent of ϕξ (or over Yη) if ϕξ mapsWξ to a proper analytic (respectively, nowhere-
dense) subgerm of Yη.

We are allowing ourselves some imprecision of language. The notation ϕξ :
Xξ→ Yη is meant to suggest the germ at a point ξ ∈X of a morphism of complex-
analytic spaces ϕ : X → Y , η = ϕ(ξ). In particular, we will write OX,ξ for the
local ring of Xξ . Consider a representative ϕ : X → Y of ϕξ . The “if” clause in
Definition 1.5 means more precisely that, for a sufficiently small representativeW
ofWξ inX, the germ ϕ(W )η lies in a proper analytic subgerm of Yη (respectively,
ϕ(W ) is nowhere-dense in Y ).

By the prime avoidance lemma, ϕξ :Xξ → Yη has an algebraic (respectively,
geometric) vertical component if and only if there exists a nonzero element m ∈
OX,ξ such that the zero-set germ V(AnnOX,ξ

(m)) of the annihilator of m in OX,ξ
is mapped to a proper analytic (respectively, nowhere-dense) subgerm of Yη.

We can extend the notion of vertical component to a finitely generated OX,ξ-
module F :

Definition 1.6. Let p1, . . . ,ps be the associated primes of F in OX,ξ and, for
j = 1, . . . ,s, let (Zj)ξ be the germ of a complex analytic subspace of X, defined
by OZj ,ξ := OX,ξ/pj . We say that F has a geometric vertical component over Yη
(or over OY,η) if, for some j, ϕξ maps (Zj)ξ to a nowhere-dense subgerm of Yη;
equivalently, there exists a nonzerom ∈ F such that V(AnnOX,ξ

(m)) is mapped to
a nowhere-dense subgerm of Yη. We will call suchm a geometric vertical element
(or simply a vertical element) of F over Yη (or over OY,η).

Note that an analogously defined “algebraic vertical element” of F over Yη is
simply a (nonzero) zero-divisor of F over OY,η, so there is no need to define alge-
braic vertical elements. A vertical element will always mean geometric vertical.
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Remark 1.7. In the special case that F =OX,ξ , Xξ has no geometric (respec-
tively, algebraic) vertical components over Yη if and only if OX,ξ (as an OX,ξ-
module) has no vertical elements (respectively, no zero-divisors) over OY,η.

Now let R denote a regular local analytic C-algebra of dimension n. Then
R is isomorphic to the ring C{y} = C{y1, . . . ,yn} of convergent power series in
n variables. A local analytic R-algebra A means a ring of the form R{x}/I =

C{y,x}/I , where I is an ideal in C{y,x} = C{y1, . . . ,yn,x1, . . . ,xm}, with the
canonical homomorphism R→ A. Let F denote an R-module. We say that F is
an almost finitely generated R-module (following [11]) if F is a finitely generated
A-module, for some local analytic R-algebra A. In this case, there is a morphism
of germs of analytic spaces ϕξ :Xξ→ Yη such thatR∼=OY,η,A∼=OX,ξ ,R→A is
the induced homomorphism ϕ∗ξ :OY,η→OX,ξ , and F is a finitely generated OX,ξ-
module. We say that a nonzero element m ∈ F is vertical over R if m is vertical
over OY,η in the sense of Definition 1.6.

Remark 1.8. It is easy to see that the notion of vertical element is well-defined;
i.e., independent of a choice of local R-algebra A such that F is a finitely generated
A-module. In particular, given an almost finitely generated R-module F , we can
assume without loss of generality that F is finitely generated over the regular ring
A=R{x} ∼=C{y,x}, where x= (x1, . . . ,xm), for somem≥ 0.

1.2. Main results. Our main theorem is the following flatness criterion.

THEOREM 1.9. Let R be a regular local analytic C-algebra and let F denote
an almost finitely generated R-module. Let n= dimR. Then F isR-flat if and only
if the n-fold analytic tensor power F ⊗̃

n
R has no vertical elements over R.

(See Section 2 for the notion of analytic tensor power.) Theorem 1.9 can be
restated as follows.

COROLLARY 1.10. Let ϕ : X → Y denote a morphism of complex-analytic
spaces, where Y is smooth, and let F denote a coherent sheaf of OX -modules. Let
ξ ∈X and η = ϕ(ξ). Then Fξ is OY,η-flat if and only if the n-fold analytic tensor
power F⊗̃

n
OY,η

ξ has no vertical elements over OY,η, where n= dimη Y .

Theorem 1.1 is equivalent to Corollary 1.10 in the special case that F =OX ,
according to Remark 1.7 and the canonical isomorphismOX,ξ⊗̃OY,η

· · · ⊗̃OY,η
OX,ξ∼=OX{n},ξ{n} .

Theorem 1.1 in the special case that Xξ is equidimensional is the theorem of
Galligo and Kwieciński [11]. The assumption that Xξ is equidimensional guar-
antees that A = OX,ξ is a finite torsion-free module over some R-flat algebra S
(where R=OY,η), and Auslander’s techniques can be extended to this case.
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We are happy to acknowledge the influence of [11] on our paper. We are also
grateful to L. Avramov and S. Iyengar for pointing out an error in an earlier version
of the article (arXiv:0901.2744v2).

We prove Theorem 1.9 in Section 5 below. We reduce to the case that A =

R{x1, . . . ,xm} using Remark 1.8, and then argue by induction on m. The case
m = 0 follows directly from Auslander’s theorem. We divide the inductive step
into three cases, according as F is torsion-free over A, F is a torsion A-module, or
neither. The proof of the first case is independent of the inductive hypothesis, and
again uses the argument of [5] (in the same way it is used in [11]). The second case
follows from the inductive assumption using the Weierstrass Preparation Theorem.

The most difficult new situation in the inductive step is the case that F is nei-
ther torsion-free nor a torsion A-module. Our proof involves the geometry of the
support of F over A. If F is A-torsion-free, then the support of F coincides with
that of A. In general, an analysis of the support of F allows us either to reduce the
fibre dimension m over R, or otherwise to use Proposition 4.2 on the variation of
fibre dimension to produce zero-divisors over R already for topological reasons:

We show (in Section 4) how nonconstancy of the dimension of the fibres of
a morphism ϕ : X → Y leads to isolated algebraic vertical components in fibred
powers of ϕ.

By way of comparison with Corollary 1.10, we note that a lack of isolated
algebraic vertical components in the n-fold fibred power (where n is the target
dimension) characterizes openness of an analytic mapping with irreducible target
(see [1], [2]). Proposition 4.2 is a simpler version of the latter result.

Frisch’s generic flatness theorem asserts that if F is a coherent sheaf of OX -
modules over a morphism ϕ : X → Y of complex-analytic spaces, then {ξ ∈X :
Fξ is not OY,ϕ(ξ)-flat} has image nowhere-dense in Y . Frisch’s theorem is respon-
sible for the criterion of Theorem 1.9 in terms of geometric vertical elements. The
existence of a vertical element in F ⊗̃

n
R guarantees the existence of a zero-divisor

of F ⊗̃
k
R over R, for some k ≥ n (by [1] and Theorem 1.9). The following question

seems to be open.

QUESTION 1.11. With the assumptions of Theorem 1.9, if F is not R-flat, does
F ⊗̃

n
R have a zero-divisor over R?

If ϕξ : Xξ → Yη and F have an underlying algebraic structure as in Theo-
rem 1.3, then the notions of geometric and algebraic vertical components coincide,
so that Theorem 1.3 follows from Theorem 1.9:

Proof of Theorem 1.3. If F is R-flat, then F⊗k
R is R-flat and therefore R-

torsion-free, for all k.
On the other hand, suppose that F is not R-flat. Since A is a localization of a

quotient of a polynomial R-algebraB=R[x1, . . . ,xm] and F is a finitely generated
A-module, then F is also finite over S−1B, for some multiplicative subset S of B.
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Therefore, F ∼= S−1M , for some finitely generated B-module M . Flatness and
torsion-freeness are both local properties; i.e., F is R-flat (respectively, R-torsion-
free) if and only if Fb is R-flat (respectively, R-torsion-free), for every maximal
ideal b of S−1B. Since F is not R-flat, there is a prime ideal p in B such that
p∩S =∅ andMp is not R-flat, and it suffices to prove thatM

⊗n
R

p is not R-torsion-
free.

Now, the nonflatness ofMp over R is equivalent to that ofMn, for every maxi-
mal ideal n in B containing p (indeed, for every such n, we have (Mn)p ∼=Mp, and
a localization of an R-flat B-module is R-flat).

Consider a maximal ideal n in B containing p. We will show that M⊗n
R

n has
a zero-divisor in R. Let ϕ : X → Y be the morphism of complex-analytic spaces
associated to the morphism SpecB→ SpecR and let F be the coherent sheaf of
OX-modules associated to M . Let ξ ∈X be the point corresponding to the max-
imal ideal n of SpecB. It follows from faithful flatness of completion that Fξ is
not OY,η-flat, where η = ϕ(ξ). By Theorem 1.9, F⊗̃

n
OY,η

ξ has a vertical element
overOY,η. Since ϕ{n} is the holomorphic map induced by the ring homomorphism
R→B⊗

n
R , it follows from Chevalley’s Theorem that F⊗̃

n
OY,η

ξ has a zero-divisor in
OY,η. HenceM⊗n

R
n has a zero-divisor in R, as required.

Finally, let q1, . . . ,qs be the primes inR whose union is the set of zero-divisors
ofM⊗n

R . It follows from the preceding paragraph that if n is a maximal ideal con-
taining p, then n∩R⊃ qj , for some 1≤ j ≤ s; hence n∩R⊃ q1 . . .qs. Since B is a
Jacobson ring (see [8, Thm. 4.19]), p is the intersection of all maximal ideals con-
taining p, and consequently p∩R⊃ q1 . . .qs. Then p∩R⊃ qj , for some j, because
p∩R is prime. Therefore the zero-divisors from qj do not vanish after localizing
in p, and henceM⊗n

R
p has a zero-divisor in R. �

2. Analytic tensor product and fibred product. We briefly recall the con-
cepts of analytic tensor product and fibred product of analytic spaces, which are
used throughout the paper.

The analytic tensor product is defined in the category of finitely generated mod-
ules over local analytic C-algebras (i.e., rings of the formC{z1, . . . ,zn}/I for some
ideal I) by the usual universal mapping property for tensor product (cf. [12]): Let
ϕi :R→Ai (i= 1,2) be homomorphisms of local analytic C-algebras. Then there
is a unique (up to isomorphism) local analytic C-algebra A1 ⊗̃RA2, together with
homomorphisms θi :Ai→A1 ⊗̃RA2 (i= 1,2), such that (1) θ1 ◦ϕ1 = θ2 ◦ϕ2, and
(2) for every pair of homomorphisms of local analytic C-algebras ψ1 : A1 → B,
ψ2 : A2 → B satisfying ψ1 ◦ϕ1 = ψ2 ◦ϕ2, there is a unique homomorphism of
local analytic C-algebras ψ : A1 ⊗̃RA2→ B making the associated diagram com-
mute. The algebra A1 ⊗̃RA2 is called the analytic tensor product of A1 and A2
over R.
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For finite modules M1 and M2 over local analytic R-algebras A1 and A2,
respectively, there is a unique (up to isomorphism) finite A1 ⊗̃RA2-module
M1 ⊗̃RM2, together with an R-bilinear mapping ρ :M1×M2→M1 ⊗̃RM2, such
that for every R-bilinear κ :M1×M2→N , whereN is a finite A1 ⊗̃RA2-module,
there is a unique homomorphism of A1 ⊗̃RA2-modules λ : M1 ⊗̃RM2 → N

satisfying κ = λ ◦ρ. The module M1 ⊗̃RM2 is called the analytic tensor product
ofM1 andM2 over R.

It is sometimes convenient to express the analytic tensor product of modules
over a local analytic C-algebra in terms of ordinary tensor product of certain nat-
urally associated modules: given homomorphisms of local analytic C-algebras ϕ :
R→ Ai, and finitely generated Ai-modules Mi (i= 1,2), the modulesM1 ⊗̃RA2
and A1 ⊗̃RM2 are finitely generated over A1 ⊗̃RA2, and there is a canonical iso-
morphism

M1 ⊗̃RM2 ∼= (M1 ⊗̃RA2)⊗A1 ⊗̃RA2 (A1 ⊗̃RM2).

In particular, if A1 = R{x}/I1 and A2 = R{t}/I2, where x = (x1, . . . ,xl), t =
(t1, . . . , tm) are systems of variables and I1 ⊂R{x}, I2 ⊂R{t} are ideals, then

A1 ⊗̃RA2 ∼= (A1 ⊗̃RR{t})⊗R{x}⊗̃RR{t} (R{x}⊗̃RA2)

∼= (R{x,t}/I1R{x,t})⊗R{x,t} (R{x,t}/I2R{x,t})
∼= R{x,t}/(I1R{x,t}+ I2R{x,t}) .

The fibred product of analytic spaces is defined by a dual universal mapping
property (see [9]): let ϕi : Xi → Y (i = 1,2) denote holomorphic mappings of
complex analytic spaces. Then there exists a unique (up to isomorphism) complex
analytic space X1×Y X2, together with holomorphic maps πi : X1×Y X2 → Xi

(i = 1,2), such that (1) ϕ1 ◦π1 = ϕ2 ◦π2, and (2) for every pair of holomorphic
maps ψ1 : X →X1, ψ2 : X →X2 satisfying ϕ1 ◦ψ1 = ϕ2 ◦ψ2, there is a unique
holomorphic map ψ : X → X1×Y X2 making the associated diagram commute.
The space X1 ×Y X2 is called the fibred product of X1 and X2 over Y (more
precisely, over ϕ1 and ϕ2). There is a canonical holomorphic mapping ϕ1×Y ϕ2 :
X1×Y X2→ Y , given by ϕ1×Y ϕ2 = ϕi ◦πi (where i= 1 or 2).

Given a holomorphic map ϕ :X→ Y of complex analytic spaces, with ϕ(ξ) =
η, let ϕξ :Xξ → Yη denote the germ of ϕ at ξ. We denote by ϕ{d} :X{d} → Y the
canonical map from the d-fold fibred power of X over Y to Y , and by ϕ{d}

ξ{d} :

X
{d}
ξ{d} → Yη its germ at the point ξ{d} := (ξ, . . . , ξ) ∈X{d}.
Suppose that ϕ1 : X1 → Y and ϕ2 : X2 → Y are holomorphic mappings of

analytic spaces, with ϕ1(ξ1) = ϕ2(ξ2) = η. Then the local rings OXi,ξi (i = 1,2)
are OY,η-modules and, by the uniqueness of fibred product and of analytic tensor
product, the local ring OZ,(ξ1,ξ2) of the fibred product Z = X1×Y X2 at (ξ1, ξ2)
is canonically isomorphic to OX1,ξ1⊗̃OY,η

OX2,ξ2. Therefore, given a holomorphic
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germ ϕξ : Xξ → Yη, we will identify the d-fold analytic tensor power O⊗̃
d
OY,η

X,ξ =

OX,ξ⊗̃OY,η
· · · ⊗̃OY,η

OX,ξ d times with the local ring of the d-fold fibred power
OX{d},ξ{d} , for d≥ 1.

3. Homological properties of almost finitely generated modules. We
first recall some homological properties of almost finitely generated modules,
established by Galligo and Kwieciński [11], that generalize the corresponding
properties of finite modules used by Auslander [5]. We then generalize a lemma
of Auslander [5, Lemma 3.1] to almost finitely generated modules (Lemma 3.3
below).

Our proof of the main theorem 1.9 in the case that F is torsion-free over
A (Case (1) in Section 5) follows the argument of [5]. Auslander’s main tools
are two addition formulas: the Auslander-Buchsbaum formula (see [17, Ch. VII,
Prop. 1.12]) and additivity of projective dimension [5, Cor. 1.3]. We replace these
by tools adapted to almost finitely generated modules: an Auslander-Buchsbaum
type formula for flat dimension (Proposition 3.1(2)) and additivity of flat dimension
(Lemma 3.3).

Let R= C{y1, . . . ,yn} denote a regular local analytic C-algebra of dimension
n. Let ⊗̃R denote the analytic tensor product over R, and let T̃or

R
be the corre-

sponding derived functor.
Let F denote an almost finitely generated R-module. We define the flat dimen-

sion fdR(F ) of F over R as the minimal length of a flat resolution of F (i.e., a
resolution by R-flat modules). It is easy to see that

fdR(F ) =max
{
i ∈ N : T̃or

R
i (F,N) = 0 for some N

}
.(3.1)

Indeed, ifM is an almost finitely generated R-module, then

M is R-flat ⇐⇒ T̃or
R
1
(
M,R/mR

)
= 0,(3.2)

where mR is the maximal ideal of R (cf. [15, Prop. 6.2]). Let (A,mA) be a regular
local R-algebra such that F is a finite A-module. Then (3.1) follows from (3.2)
applied to the kernels of a minimal A-free (hence R-flat) resolution

F∗ : · · · αi+1−−−→ Fi+1
αi−−→ Fi

αi−1−−−→ ·· · α1−−→ F1
α0−−→ F0 −→ F

of F . (F∗ minimal means that αi(Fi+1)⊂mAFi, for all i ∈ N).
The depth depthR(F ) of F as an R-module is defined as the length of a max-

imal F -sequence in R (i.e., a sequence a1, . . . ,as ∈ mR such that aj is not a zero-
divisor in F/(a1, . . . ,aj−1)F , for j = 1, . . . ,s). Since all the maximal F -sequences
in R have the same length, depth is well defined: As observed in [11, Lemma 2.4],
the classical proof of Northcott-Rees for finitely generated modules (see, e.g., [17,
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Section VI, Prop. 3.1]), carries over to the case of almost finitely generated mod-
ules.

PROPOSITION 3.1. Let M and N be almost finitely generated R-modules.
Then the following properties hold.

(1) Rigidity of T̃or
R
[11, Prop. 2.2(4)]. If T̃or

R

i0(M,N) = 0 for some i0 ∈ N,

then T̃or
R

i (M,N) = 0 for all i≥ i0.
(2) Auslander-Buchsbaum-type formula [11, Thm. 2.7].

fdR(M)+depthR(M) = n.

(3) Additivity of flat dimension [11, Prop. 2.10]. If T̃or
R

i (M,N) = 0 for all
i≥ 1, then

fdR(M)+ fdR(N) = fdR(M ⊗̃RN) .

(4) Verticality of T̃or
R
(cf. [11, Prop. 4.5]). For all i ≥ 1, T̃or

R

i (M,N) is an
almost finitely generated R-module, and every element of T̃or

R

i (M,N) is vertical
over R (recall Definition 1.6).

Remark 3.2. The analytic T̃or
R

i need not be torsion R-modules, except in the
case thatM andN are finitely generated over R. (In this case, T̃or= Tor.) It seems
to be unknown whether the T̃or

R

i necessarily contain R-zero-divisors (cf. Question
1.12).

LEMMA 3.3. Let A = R{x} denote a regular local analytic R-algebra, x =

(x1, . . . ,xm). Let F be a finitely generated A-torsion-free module, and let N be a
module which is finitely generated over B = A⊗̃

j
R , for some j ≥ 1. Suppose that

F ⊗̃RN has no vertical elements over R. Then:
(1) N has no vertical elements over R;
(2) T̃or

R
i (F,N) = 0, for all i≥ 1;

(3) fdR(F )+ fdR(N) = fdR(F ⊗̃RN).

Proof. To prove (1), consider N ′ = {n ∈ N : n is vertical over R}. It is easy
to see that N ′ is a B-submodule of N . Indeed, if n,n1,n2 ∈N ′ and b ∈B, then

AnnB
(
n1+n2

)⊃ AnnB
(
n1

) ·AnnB
(
n2

)
and AnnB(bn)⊃ AnnB(n);

hence the zero set germ V(AnnB(n1 + n2)) is mapped into the union of the
(nowhere-dense) images of V(AnnB(n1)) and V(AnnB(n2)), and V(AnnB(bn))
is mapped into the image of V(AnnB(n)). Therefore, we get an exact sequence of
B-modules,

0−→N ′ −→N −→N ′′ =N/N ′ −→ 0.
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Tensoring with F induces a long exact sequence of A⊗̃RB ∼=A⊗̃
j+1
R -modules,

· · · −→ T̃or
R

i+1(F,N
′)−→ T̃or

R

i+1(F,N)−→ T̃or
R

i+1(F,N
′′)

−→ T̃or
R

i (F,N
′)−→ ·· · −→ T̃or

R

1 (F,N
′′)

−→ F ⊗̃RN ′ −→ F ⊗̃RN −→ F ⊗̃RN ′′ −→ 0.

(3.3)

Since every element ofN ′ is vertical over R, the same is true for F ⊗̃RN ′ (indeed,
AnnA⊗̃RB(f ⊗̃Rn)⊃1⊗̃R AnnB(n) for all f∈F, n∈N ′). But F ⊗̃RN has no ver-
tical elements, by assumption, so that F ⊗̃RN ′→F ⊗̃RN is the zero map; hence
F ⊗̃RN ∼= F ⊗̃RN ′′. In particular, F ⊗̃RN ′′ has no vertical elements over R.

Since F is A-torsion-free, there is an injection of F into a finite free A-module
L (obtained by composing the natural map F → (F ∗)∗, which is injective in this
case, with the dual of a presentation of F ∗). The exact sequence of A-modules
0→ F → L→ L/F → 0 induces a long exact sequence of A⊗̃RB-modules,

· · · −→ T̃or
R

i+1(L,N
′′)−→ T̃or

R

i+1(L/F,N
′′)−→ T̃or

R

i (F,N
′′)

−→ T̃or
R

i (L,N
′′)−→ ·· · −→ T̃or

R

1 (L,N
′′)−→ T̃or

R

1 (L/F,N
′′)

−→ F ⊗̃RN ′′ −→ L⊗̃RN ′′ −→ L/F ⊗̃RN ′′ −→ 0.

Since L is a free A-module and therefore R-flat, T̃or
R

i (L,N
′′) = 0 for all i≥ 1,

and we obtain isomorphisms

T̃or
R

i+1(L/F,N
′′)∼= T̃or

R

i (F,N
′′), i≥ 1,(3.4)

as well as injectivity of T̃or
R

1 (L/F,N
′′)→ F ⊗̃RN ′′. But F ⊗̃RN ′′ has no ver-

tical elements, while every element of T̃or
R

1 (L/F,N
′′) is vertical over R (by

Prop. 3.1(4)); hence T̃or
R

1 (L/F,N
′′) → F ⊗̃RN ′′ is the zero map. Therefore,

· · · 0−→ T̃or
R

1 (L/F,N
′′) 0−→ ·· · is exact; hence T̃orR1 (L/F,N ′′) = 0. By rigidity of

T̃or
R
(Prop. 3.1(1)), T̃or

R

i+1(L/F,N
′′) = 0 for all i≥ 1, so by (3.4),

T̃or
R

i (F,N
′′) = 0, i≥ 1.(3.5)

In particular, T̃or
R

1 (F,N
′′) = 0, hence, · · · 0−→ F ⊗̃RN ′ 0−→ ·· · is exact, by (3.3),

so that F ⊗̃RN ′ = 0. However, F ⊗̃RN ′ ∼= (F ⊗̃RB)⊗A⊗̃RB (A⊗̃RN ′) is an
(ordinary) tensor product of finitely generated modules over a regular local ring
A⊗̃RB, so it is zero only if one of the factors is zero. We conclude that A⊗̃RN ′ =
0, and therefore N ′ = 0, by R-flatness of A. This proves assertion (1).

Now, T̃or
R

i (F,N
′) = 0 for all i≥ 0; hence T̃or

R

i (F,N) ∼= T̃or
R

i (F,N
′′) for all

i≥ 1, by (3.3). Therefore, T̃or
R

i (F,N) = 0 for all i≥ 1, by (3.5), proving (2).
Assertion (3) follows from Proposition 3.1(3) and (2). �
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4. Vertical components and variation of fibre dimension. In this section,
we describe a relationship between the filtration of the target of an analytic map-
ping ϕ :X→ Y by fibre dimension and the isolated irreducible components of the
n-fold fibred powerX{n}, where n= dimY .

Let ϕξ : Xξ → Yη be a morphism of germs of analytic spaces, where Yη is
irreducible and of dimension n. Let Y be an irreducible representative of Yη, and
let X be a representative of Xξ , such that the components of X are precisely the
representatives inX of the components ofXξ , and ϕ(X)⊂ Y , where ϕ represents
the germ ϕξ . Let fbdxϕ denote the fibre dimension dimxϕ

−1(ϕ(x)) of ϕ at a point
x ∈X.

We will use the following notation in this section: l := min{fbdxϕ : x ∈X},
k :=max{fbdxϕ : x ∈X}, and Aj := {x ∈X : fbdxϕ≥ j}, l ≤ j ≤ k. ThenX =

Al⊃Al+1⊃ ·· · ⊃Ak and, by upper-semicontinuity of fibre dimension (see Cartan-
Remmert theorem [20, Section V.3.3, Thm. 5]), the Aj are analytic in X. Define
Bj := f(Aj) = {y ∈ Y : dimϕ−1(y) ≥ j}, l ≤ j ≤ k. Upper-semicontinuity of
fbdxϕ (as a function of x) implies that the germs (Aj)ξ and (Bj)η are independent
of the choices of representatives made above.

Note that, except for Bk (cf. proof of Proposition 4.2 below), the Bj may not
even be semianalytic in general. This fact is responsible for a complicated rela-
tionship between the algebraic vertical and geometric vertical components in the
fibred powers of X over Y (see [2] for a detailed discussion), but will not affect
our considerations here, which rely only on the properties of Bk.

PROPOSITION 4.1. [1, Prop. 2.1] Under the assumptions above, let
⋃
i∈IWi

denote the decomposition of (X{n})red into finitely many isolated irreducible com-
ponents through ξ{n}. Then:

(1) For each j = l, . . . ,k, there is an index subset Ij ⊂ I such that

Bj =
⋃

i∈Ij
ϕ{n}

(
Wi

)
.

(2) Let y ∈ Bj and let s = dimϕ−1(y) (s ≥ j). If Z is an isolated irreducible
component of the fibre (ϕ{n})−1(y), of dimension ns, and W is an irreducible
component of X{n} containing Z , then ϕ{n}(W )⊂Bj .

Proof. For (2), fix j ≥ l+ 1. (The statement is trivial for j = l, since Bl =
ϕ(X).) Suppose that there exists x = (x1, . . . ,xn) ∈ W such that ϕ(x1) ∈ Y \
Bj (and hence ϕ(xi) ∈ Y \Bj , i ≤ n). Then fbdxi ϕ ≤ j− 1, i = 1, . . . ,n; hence
fbdxϕ{n} ≤n(j−1) =nj−n. In particular, the generic fibre dimension of ϕ{n}|W
is at most nj−n. Since rank(ϕ{n}|W )≤ dimY = n, then dimW ≤ (nj−n)+n=
nj (see, e.g., [20, Section V.3]).
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Now we haveW ⊃ Z , dimW ≤ nj, dimZ = ns≥ nj, and bothW and Z are
irreducible analytic sets inX{n}. This is possible only ifW =Z; hence ϕ{n}(W )=

ϕ{n}(Z) = {y} ⊂ Bj ; a contradiction. Therefore ϕ{n}(W ) ⊂ Bj , completing the
proof of (2).

Part (1) follows immediately, since if y ∈Bj andZ is an irreducible component
of (ϕ{n})−1(y) of the highest dimension, then there exists an isolated irreducible
componentW of X{n} that contains Z . �

The following is a simplified variant of an openness criterion of [1, Thm. 2.2],
proved here under somewhat weaker assumptions.

PROPOSITION 4.2. Let ϕξ : Xξ → Yη be a morphism of germs of analytic
spaces. Suppose that Yη is irreducible, dimYη = n, dimXξ =m, and the maximal
fibre dimension of ϕξ is not generic on some m-dimensional irreducible compo-
nent of Xξ . Then the n-fold fibred power ϕ

{n}
ξ{n} :X

{n}
ξ{n} → Yη contains an isolated

algebraic vertical component.

Proof. As above, let ϕ : X → Y be a representative of ϕξ , where Y is ir-
reducible and of dimension n. Let k := max{fbdxϕ : x ∈ X}, Ak := {x ∈ X :
fbdxϕ = k}, and Bk := ϕ(Ak) = {y ∈ Y : dimϕ−1(y) = k}. Then the fibre di-
mension of ϕ is constant on the analytic set Ak. By the Remmert Rank theo-
rem (see [20, Section V.6, Thm. 1]), Bk is locally analytic in Y , of dimension
dimAk−k ≤ dimX−k. Since η ∈Bk, after shrinking Y if necessary, we can as-
sume that Bk is an analytic subset of Y . Therefore, by Proposition 4.1, it is enough
to show that the analytic germ (Bk)η is a proper subgerm of Yη. Let U be an iso-
lated irreducible component ofX, of dimensionm= dimX, and such that k is not
the generic fibre dimension of ϕ|U . It follows that

dimY ≥ dimU − generic fbdϕ|U ≥ m−k+1 .

Then dimBk ≤ m− k < dimY ; hence dim(Bk)η < dimY = dimYη, so that
(Bk)η � Yη. �

5. Proof of the main theorem. Let F be an almost finitely generated
module over R :=C{y1, . . . ,yn}. By Remark 1.8, there existsm≥ 0 such that F is
finitely generated as a module over A=R{x}, where x= (x1, . . . ,xm). LetX and
Y be connected open neighborhoods of the origins in Cm+n and Cn (respectively),
and let ϕ : X → Y be the canonical coordinate projection. Let F be a coherent
sheaf of OX -modules whose stalk at the origin in X equals F . We can identify R
with OY,0 and A with OX,0. Then F is R-flat if and only if F0 is OY,0-flat.

The “only if” direction of Theorem 1.9 is easy to establish (see Section 5.1).
Our proof of the more difficult “if” direction will be divided into three cases ac-
cording to the following plan. We consider a short exact sequence 0→K→ F →
N → 0, where K is the A-torsion submodule of F and N is A-torsion-free. Then
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N can be treated by Auslander’s techniques (as extended in Section 3); see Case (1)
of the proof below. The A-torsion module K is supported over a subgerm of X0 of
strictly smaller fibre dimension over Y0, so it can be treated by induction (Case (2)).
For the general case (3), we want to show that the analytic tensor powers of either
N or K embed into the corresponding powers of F , and hence so do their R-
vertical elements.

The latter would be automatic if F were the direct sum ofK andN . This is not
true, in general. We can, however, choose N to be a submodule of F of the form
g·F , for a suitable choice of g ∈A. It follows that the analytic tensor powers ofK
embed into those of F , unless gF is not R-flat. In the latter case, in turn, we show
that the analytic tensor powers of gF embed into those of F .

The following lemma will be used in Case (3) of the proof of Theorem 1.9
below. It will allow us to conclude that the analytic tensor powers of gF embed
into the corresponding powers of F , provided gF is A-torsion-free.

LEMMA 5.1. LetR=C{y1, . . . ,yn}, and letA andB be regular local analytic
R-algebras. Suppose thatM andN are finiteA- andB-modules (respectively). Let
g ∈A, h∈B, andm∈ gM ⊗̃RhN all be nonzero elements. Ifm= 0 as an element
of M ⊗̃RN , then (g ⊗̃Rh)·m = 0 in gM ⊗̃RhN . In other words, if g ⊗̃Rh is not
a zero-divisor of gM ⊗̃RhN , then the canonical homomorphism gM ⊗̃RhN →
M ⊗̃RN is an embedding.

Proof. Using the identification

gM ⊗̃RhN ∼= (gM ⊗̃RB)⊗A⊗̃RB (A⊗̃RhN) ,

we can write m =
∑k

i=1mi⊗ni, where the mi ∈ gM ⊗̃RB, and n1, . . . ,nk gen-
erate A⊗̃RhN . The latter can be extended to a sequence n1, . . . ,nk,nk+1, . . . ,nt
generating A⊗̃RN . Setting mk+1 = · · · = mt = 0, we get m =

∑t
i=1mi⊗ni ∈

(M ⊗̃RB)⊗A⊗̃RB (A⊗̃RN). By [8, Lemma 6.4], m= 0 inM ⊗̃RN if and only
if there arem′1, . . . ,m′s ∈M ⊗̃RB and aij ∈A⊗̃RB, such that

s∑

j=1

aijm
′
j =mi in M ⊗̃RB, for all i;(5.1)

t∑

i=1

aijni = 0 in A⊗̃RN, for all j.(5.2)

Multiplying the equations (5.1) by g ⊗̃R 1, we get
s∑

j=1
aij(g ⊗̃R 1)m′j = (g ⊗̃R 1)mi in gM ⊗̃RB, for all i;(5.3)

hence (g ⊗̃R 1)m= 0 in gM ⊗̃RN , by (5.2) and (5.3).
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Now write (g ⊗̃R 1)m =
∑l

i=1mi ⊗ ni, where the ni ∈ A⊗̃RN , and
m1, . . . ,ml generate gM ⊗̃RB. Then (g ⊗̃R 1)m = 0 in (gM ⊗̃RB) ⊗A⊗̃RB

(A⊗̃RN) if and only if there are n′1, . . . ,n′p ∈ A⊗̃RN and bij ∈ A⊗̃RB, such
that

p∑

j=1

bijn
′
j = ni in A⊗̃RN, for all i;(5.4)

l∑

i=1

bijmi = 0 in gM ⊗̃RB, for all j.(5.5)

Multiplying the equations (5.4) by 1⊗̃Rh, we get
p∑

j=1
bij(1⊗̃Rh)n′j = (1⊗̃Rh)ni in A⊗̃RhN, for all i;(5.6)

hence (g ⊗̃Rh)m = 0 in gM ⊗̃RhN , by (5.5) and (5.6). Thus g ⊗̃Rh is a zero-
divisor of gM ⊗̃RhN , as required. �

5.1. Proof of Theorem 1.9. Let F be an almost finitely generated mod-
ule over R := C{y1, . . . ,yn}. By Remark 1.8, there exists m ≥ 0 such that F is
finitely generated as a module over A :=R{x}=R{x1, . . . ,xm}. Let X and Y be
connected open neighborhoods of the origins in C

m+n and C
n (respectively), and

let ϕ : X → Y be the canonical coordinate projection. Let F be a coherent sheaf
of OX-modules whose stalk at the origin in X equals F , and let G be a coherent
OX{n}-module whose stalk at the origin 0{n} inX{n} equals F ⊗̃

n
R . We can identify

R with OY,0 and A with OX,0. Then F is R-flat if and only if F0 is OY,0-flat.
We first prove the “only if” direction of Theorem 1.9, by contradiction. As-

sume that F is R-flat. Since flatness is an open condition, by Douady’s theo-
rem [7], we can assume that F and G are OY -flat. Suppose that F ⊗̃

n
R has a ver-

tical element over OY,0. In other words, (after shrinking X and Y if necessary)
there exist a nonzero section m̃ ∈ G and an analytic subset Z ⊂ X{n}, such that
Z0 = V(AnnO

X{n},0{n}
(m̃0)) and the image ϕ{n}(Z) has empty interior in Y . Let

ϕ̃ denote the restriction ϕ{n}|Z : Z→ Y . Consider ξ ∈Z such that the fibre dimen-
sion of ϕ̃ at ξ is minimal. Then the fibre dimension fbdx ϕ̃ is constant on some open
neighborhood U of ξ inZ . By the Remmert Rank theorem, ϕ̃(U) is locally analytic
in Y near η = ϕ̃(ξ). Since ϕ̃(Z) has empty interior in Y , it follows that there is a
holomorphic function g in a neighborhood of η in Y , such that (ϕ̃(U))η ⊂ V(gη).
Therefore, ϕ̃∗ξ(gη) · m̃ξ = 0 in Gξ; i.e., Gξ has a (nonzero) zero-divisor in OY,η,
contradicting flatness.

Wewill now prove the more difficult “if” direction of the theorem, by induction
on m. If m = 0, then F is finitely generated over R, and the result follows from
Auslander’s theorem 1.2 (because flatness of finitely generated modules over a
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local ring is equivalent to freeness, the analytic tensor product equals the ordinary
tensor product for finite modules, and vertical elements in finite modules are just
zero-divisors).

The inductive step will be divided into three cases:
(1) F is torsion-free over A;
(2) F is a torsion A-module;
(3) F is neither A-torsion-free nor a torsion A-module.

Case 1. We prove this case independently of the inductive hypothesis. We
essentially repeat the argument of Galligo and Kwieciński [11], which itself is an
adaptation of Auslander [5] to the almost finitely generated context.

Suppose that F ⊗̃
n
R has no vertical elements over R. Then it follows

from Lemma 3.3(1) that F ⊗̃
i
R has no vertical elements, for i = 1, . . . ,n. By

Lemma 3.3(3),

fdR(F ⊗̃
n
R) = fdR(F )+ fdR

(
F ⊗̃

n−1
R

)
= · · ·= n · fdR(F ).

On the other hand, since F ⊗̃
n
R has no vertical elements over R, it has no zero-

divisors over R, so that depthR(F ⊗̃
n
R) ≥ 1. It follows from Proposition 3.1(2) that

fdR(F ⊗̃
n
R)< n. Hence n · fdR(F )< n. This is possible only if fdR(F ) = 0; i.e., F

is R-flat.

Case 2. Suppose that F is not R-flat and a torsion A-module. We will show
that then F ⊗̃

n
R contains vertical elements over R. Let I = AnnA(F ). Since every

element of F is annihilated by some nonzero element of A, and F is finitely gen-
erated over A, then I is a nonzero ideal in A. Put B = A/I; then F is finitely
generated over B. Let I(0) denote the evaluation of I at y = 0 (i.e., I(0) is the
ideal generated by I in A(0) :=A⊗̃RR/mR

∼= C{x1, . . . ,xm}).
First suppose that I(0) = (0). Then there exists g ∈ I such that g(0) :=

g(0,x) = 0, and F is a finite A/(g)A-module. It follows that (after an appropriate
linear change in the x-coordinates) g is regular in xm and hence, by the Weierstrass
Preparation Theorem, that F is finite over R{x1, . . . ,xm−1}. Therefore, F ⊗̃n

R has
a vertical element over R, by the inductive hypothesis.

On the other hand, suppose that I(0)= (0); i.e., I⊂mRA. ThenB ⊗̃RR/mR=

(A/I)⊗̃RR/mR equals C{x1, . . . ,xm}. Let Z be a closed analytic subspace of X
such that OZ,0 ∼= B, and let ϕ̃ := ϕ|Z . It follows that the fibre ϕ̃−1(0) equals Cm.
Of course, m is not the generic fibre dimension of ϕ̃ on any irreducible component
of Z , because otherwise all its fibres would equal Cm, so we would have B = A

and I = (0), contrary to the choice of I . Therefore, by Proposition 4.2, there is an
isolated algebraic vertical component in the n-fold fibred power of ϕ̃0; i.e., B⊗̃

n
R

has a zero-divisor in R. But F ⊗̃
n
R is a faithful B⊗̃

n
R-module, so itself it has a zero-

divisor (hence a vertical element) over R.
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Case 3. Suppose that F is not R-flat, F has zero-divisors in A, but
AnnA(F ) = (0). Let

K :=
{
f ∈ F : af = 0 for some nonzero a ∈A};

i.e.,K is the A-torsion submodule of F . SinceK is a submodule of a finitely gen-
erated module over a Noetherian ring,K is finitely generated; sayK =

∑s
i=1A ·fi.

Take ai ∈ A \{0} such that aifi = 0, and put g = a1 · · ·as. Then the sequence of
A-modules

0−→K −→ F
·g−−→ gF −→ 0(5.7)

is exact, and gF is a torsion-free A-module.
First suppose that gF is R-flat. Then by applying ⊗̃RK and F ⊗̃R to (5.7),

we get short exact sequences

0−→K ⊗̃RK −→ F ⊗̃RK −→ gF ⊗̃RK −→ 0,
0−→ F ⊗̃RK −→ F ⊗̃RF −→ F ⊗̃R gF −→ 0.

So we have injections

K ⊗̃RK ↪→ F ⊗̃RK ↪→ F ⊗̃RF ,

and by induction, an injection K⊗̃
i
R ↪→ F ⊗̃

i
R , for all i ≥ 1. In particular, K⊗̃

n
R is

a submodule of F ⊗̃
n
R . Since gF is R-flat and F is not R-flat, it follows that K is

not R-flat. Therefore, by Case (2), K⊗̃
n
R (and hence F ⊗̃

n
R) has a vertical element

over R.
Now suppose that gF is not R-flat. Then (gF )⊗̃

n
R has a vertical element over

R, by Case (1). We will show that (gF )⊗̃
n
R embeds into F ⊗̃

n
R , and hence so do

its vertical elements. By Lemma 5.1, in order for (gF )⊗̃
n
R to embed into F ⊗̃

n
R , it

suffices to prove that g⊗̃
n
R is not a zero-divisor of (gF )⊗̃

n
R .

To simplify the notation, let B denote the ring A⊗̃
n
R , and let h := g⊗̃

n
R ∈ B.

Since (gF )⊗̃
n
R is a finite B-module, we can write (gF )⊗̃

n
R = Bq/M , where q ≥ 1

andM is a B-submodule of Bq. Given b ∈B, let (M : b) denote the B-submodule
of Bq consisting of those elements m ∈Bq for which b·m ∈M . Since

(M : h)⊂ (
M : h2

)⊂ ·· · ⊂ (
M : hl

)⊂ ·· ·
is an increasing sequence of submodules of a Noetherian module Bq, it stabilizes;
i.e., there exists k≥ 1 such that (M : hk+1) = (M : hk). In other words, there exists
k ≥ 1 such that h is not a zero-divisor in hk ·Bq/M ; i.e., g⊗̃

n
R is not a zero-divisor

in (gk+1F )⊗̃
n
R .

Observe though that (because gF is A-torsion-free), multiplication by g in-
duces an isomorphism gF → g2F of A-modules, and in general, gF ∼= glF , for
l ≥ 1. We thus have isomorphisms (gF )⊗̃

n
R ∼= (glF )⊗̃

n
R of B-modules, for l ≥ 1.
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In particular, for every l ≥ 1, g⊗̃
n
R is a zero-divisor of (gF )⊗̃

n
R if and only if it

is a zero-divisor of (glF )⊗̃
n
R . Therefore, by Lemma 5.1, we have an embedding

(gF )⊗̃
n
R ↪→ F ⊗̃

n
R . This completes the proof of Theorem 1.9.
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