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GLOBALLY SUBANALYTIC ARC-SYMMETRIC SETS

JANUSZ ADAMUS

Abstract. It is shown that every C-semianalytic arc-symmetric set can be
realized as the zero locus of an arc-analytic function. As a consequence, a
Nash globally subanalytic arc-symmetric set is the zero locus of a continuous
globally-subanalytic function which is arc-analytic outside a simple normal
crossings divisor.

1. Introduction

The purpose of this article is to initiate a systematic study of a certain important
class of subanalytic sets, which are closed under analytic continuation. Let us begin
by recalling some basic notions. A set X ⊂ Rn is called semianalytic, when every
point x ∈ Rn has an open neighbourhood U such that X ∩ U is a finite union of
sets of the form

{y ∈ U : f(y) = 0, g1(y) > 0, . . . , gk(y) > 0} ,

where f, g1, . . . , gk ∈ A (U) are real analytic functions on U . A set Y ⊂ Rn is called
subanalytic, when for every point x ∈ Rn there are an open neighbourhood U and a
bounded semianalytic set X ⊂ Rn+m, for some m, such that Y ∩U = π(X), where
π : Rn+m → Rn is the coordinate projection.

For any n ∈ Z+, let vn : Rn → Rn denote the semialgebraic map

(x1, . . . , xn) 7→

(
x1√
1 + x2

1

, . . . ,
xn√
1 + x2

n

)
.

We say that a set E ⊂ Rn is globally subanalytic if its image vn(E) is subanalytic
in Rn. Since vn is an analytic isomorphism onto the bounded open set (−1, 1)n,
it follows that globally subanalytic sets are subanalytic. The importance of the
class of globally subanalytic sets stems from the fact that they form an o-minimal
structure (Sn)n∈N (see [10]). This means, by definition, that for every n ∈ N, (i)
Sn is a boolean algebra of subsets of Rn, (ii) X ∈ Sn implies X×R,R×X ∈ Sn+1,
(iii) {(x1, . . . , xn) : x1 = xn} ∈ Sn, (iv) X ∈ Sn+1 implies π(X) ∈ Sn, where
π : Rn+1 → Rn is the coordinate projection, (v) the set {(x, y) ∈ R2 : x < y}
is in S2, and (vi) the only elements of S1 are the finite unions of open intervals
and singletons. O-minimality is responsible for several finiteness properties that we
use throughout the paper, such as existence of finite stratifications. For details on
o-minimal structures, see [9].

2010 Mathematics Subject Classification. 32B20, 14P15, 14E15, 32C40.
Key words and phrases. subanalytic geometry, globally subanalytic set, arc-symmetric set,

Nash subanalytic set, semianalytic set, arc-analytic function.
J. Adamus’s research was partially supported by the Natural Sciences and Engineering Research

Council of Canada.

1

http://arxiv.org/abs/2305.13482v4


2 JANUSZ ADAMUS

Finally, a set E ⊂ Rn is called arc-symmetric, when for every real analytic arc
γ : (−1, 1) → Rn with Int(γ−1(E)) 6= ∅, one has γ((−1, 1)) ⊂ E. (Here and
throughout, Int(S) (or IntΓ(S)) denotes the interior of a set S (as a subset of Γ).)
A function f : Ω → R on a real analytic manifold Ω is called arc-analytic, when
f ◦ γ is analytic for every real analytic arc γ : (−1, 1) → Ω.

Throughout this paper we shall denote by AR(Rn) the class of globally sub-
analytic arc-symmetric subsets of Rn. This class includes, in particular, the arc-
symmetric semialgebraic subsets of Rn (introduced by Kurdyka [14]). The geometry
of semialgebraic arc-symmetric sets is well understood by now. In fact, it turns out
that they are precisely the zero loci of semialgebraic arc-analytic functions. The
elegant theory of semialgebraic arc-symmetric sets and arc-analytic functions pro-
vides a natural real counterpart of algebraic geometry over an algebraically closed
field (see [14, 5, 16, 2, 3, 15] and the references therein).

Much less is known in the subanalytic setting. The main goal of this note is
to show that certain fundamental analytic and geometric properties of the semi-
algebraic arc-symmetric sets can be generalized to our AR(Rn). We begin by
restricting to the class of C-semianalytic sets, introduced by Acquistapace, Broglia
and Fernando [1] (see Section 3). Thanks to Theorem 6.1, these can be viewed as
a local model for a more general class, namely the Nash subanalytic arc-symmetric
sets, studied in the final Section 6. In fact, we conjecture that all globally subana-
lytic arc-symmetric sets are Nash (Conjecture 6.4). Our main result, Theorem 5.2
asserts that locally a Nash subanalytic arc-symmetric set is the zero locus of a
subanalytic arc-analytic function. As a consequence, globally such a set can be
realized as the zero locus of a continuous globally subanalytic function, which is
arc-analytic outside a simple normal crossings divisor (Theorem 6.3).

2. AR topology

Let Ω be a connected real analytic submanifold of Rn. We shall denote by
AR(Ω) the family of arc-symmetric subsets of Ω that are globally subanalytic as
subsets of Rn.

Remark 2.1.

(1) Every E ∈ AR(Ω) is a closed set in the Euclidean topology on Ω. This
follows from the subanalytic Curve Selection Lemma (see, e.g., [10, 1.17]).

(2) AR(Rn) contains all arc-symmetric semialgebraic subsets of Rn.
(3) AR(Ω) contains globally subanalytic real analytic subsets of Ω. Indeed,

real analytic sets are arc-symmetric.

Kurdyka’s fundamental [14, Thm. 1.4] generalizes naturally to the globally sub-
analytic setting.

Theorem 2.2. Let Ω be a connected, globally subanalytic, real analytic submanifold

of Rn. There exists a noetherian topology on Ω, whose closed sets are precisely the

elements of AR(Ω).

The theorem follows from the two lemmas below. We shall call the above noe-
therian topology the AR-topology on Ω. The elements of AR(Ω) will henceforth
be called AR-closed sets.
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Lemma 2.3. Let Γ be a connected, smooth, subanalytic subset of Ω, and let E ⊂ Ω
be subanalytic and arc-symmetric. Then

Γ 6⊂ E =⇒ dim(Γ ∩E) < dimΓ .

The proof of Lemma 2.3 is identical to that of [14, 1.6], as it only relies on
basic topological properties of o-minimal structures. We include it for the reader’s
convenience.

Proof. Suppose that dimΓ ∩ E = dimΓ = k. Then, IntΓ(Γ ∩ E) 6= ∅, so one

can pick a point a ∈ IntΓ(Γ ∩E). Let then U be an open chart around a in Γ
and let ϕ : U → Bk be an analytic isomorphism onto the open unit ball in Rk

such that ϕ(a) = 0. We have ϕ(IntΓ(Γ ∩ E)) ∩ Bk 6= ∅, and hence can pick a
b ∈ ϕ(IntΓ(Γ ∩ E)) ∩ Bk. Let now x ∈ Bk be arbitrary and let γ̃ : [−1, 1] → Bk be
an analytic arc with γ̃(−1) = b, γ̃(1) = x. Set γ := ϕ−1◦γ̃. Then, Int(γ−1(E)) 6= ∅,
and hence by arc-symmetry of E, γ−1(E) = [−1, 1]. In particular, ϕ−1(x) ∈ E.
Since x was arbitrary, we have U ⊂ IntΓ(Γ ∩ E), and so a ∈ IntΓ(Γ ∩ E). Since

a was arbitrary, this proves IntΓ(Γ ∩E) = IntΓ(Γ ∩ E), and thus Γ ∩ E = Γ, by
connectedness of Γ. �

Lemma 2.4. Let Γ be a globally subanalytic, smooth, connected subset of Ω, and
let {Ei}i∈I ⊂ AR(Ω). Then, there exist i1, . . . , is ∈ I such that

Γ ∩
⋂

i∈I

Ei = Γ ∩Ei1 ∩ · · · ∩ Eis .

The proof, again, is virtually identical to that of [14, Lem. 1.5]. We include it
for the reader’s convenience.

Proof. We proceed by induction on k = dimΓ. If k = 0, then Γ is a singleton
and there is nothing to show. Suppose then that k ≥ 1 and the claim holds for all
globally subanalytic smooth connected subsets of Ω of dimensions less than k. If
Γ ⊂ Ei for all i ∈ I, then again there is nothing to show, so let i0 ∈ I be such that
Γ∩Ei0 6⊃ Γ. By Lemma 2.3, the globally subanalytic set Γ∩Ei0 is then of dimension
less than or equal to k − 1. By o-minimality, Γ ∩Ei0 is a finite union of connected
smooth globally subanalytic sets Γ1, . . . ,Γs. By induction, for each j = 1, . . . , s,
there exists a finite index subset Ij ⊂ I such that Γj ∩

⋂
i∈I Ei = Γj ∩

⋂
i∈Ij

Ei.

Then,

Γ ∩
⋂

i∈I

Ei = (Γ1 ∪ · · · ∪ Γs) ∩
⋂

i∈I

Ei =

s⋃

j=1

(Γj ∩
⋂

i∈Ij

Ei) = Γ ∩
⋂

i∈I1∪···∪Is

Ei .

�

Proof of Theorem 2.2. By Lemma 2.4, letting Γ = Ω, intersection of an arbi-
trary family of AR-closed sets is an AR-closed set. Clearly, finite unions of
arc-symmetric sets are also arc-symmetric. So are the empty set ∅ and Ω. Noethe-
rianity of the AR-topology follows from Lemma 2.4 again, since every decreasing
sequence of AR-closed sets stabilizes. �

Given a set E ∈ AR(Ω), we will say that E is AR-irreducible if E cannot be
expressed as a union of two proper AR-closed subsets. By noetherianity of AR-
topology, every AR-closed set E can be uniquely expressed as a finite union of
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AR-irreducible sets

E = E1 ∪ · · · ∪ Es , where Ei 6⊂
⋃

j 6=i

Ej for all i = 1, . . . , s .

The sets E1, . . . , Es are called the AR-irreducible components of E. By noethe-
rianity of AR-topology, one can also define the AR-closure of an arbitrary set

S ⊂ Ω, denoted S
AR

, as the smallest (with respect to inclusion) AR-closed subset
of Ω that contains S.

3. C-semianalytic arc-symmetric sets

Let Ω be a real analytic manifold, and let Ω∗ denote its complexification (see,
e.g., [11] for a modern exposition of complexification of real analytic spaces). A set
R ⊂ Ω is called C-analytic, when there exists an open neighbourhood V ∗ of Ω in
Ω∗ and a complex analytic set Z in V ∗ such that Z ∩ Ω = R (see, e.g., [19]). By
[19, Prop. 10] (cf. [8, Prop. 15]), R is a C-analytic subset of Ω if and only if R can
be realized as the common zero locus of finitely many real analytic functions on Ω,
and thus R = f−1(0) for some f ∈ A (Ω).

For a set S ⊂ Ω, its C-analytic closure is the smallest C-analytic set in Ω which
contains S. It is well defined, as the intersection of any family of C-analytic sets is
itself C-analytic (see, e.g., [19, § 8]).

Following [1], we will say that a subset E of Ω is C-semianalytic, when E is a
union of a locally finite family of global basic semianalytic subsets of Ω, that is,
sets of the form {f = 0, g1 > 0, . . . , gs > 0}, where f, gj ∈ A (Ω).

Let ARC(R
n) denote the family of C-semianalytic globally subanalytic arc-

symmetric sets in Rn. More generally, for a real analytic submanifold Ω ⊂ Rn, we
shall denote by ARC(Ω) the family of C-semianalytic sets E ⊂ Ω such that E is
arc-symmetric in Ω and globally subanalytic as a subset of Rn.

Theorem 3.1. Let Ω be a connected globally subanalytic real analytic submanifold

of Rn. There exists a noetherian topology on Ω, whose closed sets are precisely the

elements of ARC(Ω).

Proof. Let Γ be a globally subanalytic smooth connected subset of Ω, and let
{Ei}i∈I ⊂ ARC(Ω) be arbitrary. By Lemmas 2.3 and 2.4,

Γ ∩
⋂

i∈I

Ei = Γ ∩Ei1 ∩ · · · ∩ Eis ,

for some i1, . . . , is ∈ I. By [1, Prop. 5.3.5], locally finite unions and intersections of
C-semianalytic sets are C-semianalytic. The claim thus follows as in the proof of
Theorem 2.2. �

Given a set E ∈ ARC(Ω), we will say that E is ARC-irreducible if E cannot
be expressed as a union of two proper ARC -closed subsets. By noetherianity of
ARC -topology, every ARC -closed set E can be uniquely expressed as a finite union
of ARC -irreducible sets

E = E1 ∪ · · · ∪ Es , where Ei 6⊂
⋃

j 6=i

Ej for all i = 1, . . . , s .

The sets E1, . . . , Es are called the ARC-irreducible components of E.
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Proposition 3.2. Let Ω be a connected real analytic submanifold of Rn. Let E ∈
ARC(Ω) and let RE ⊂ Ω denote its C-analytic closure. Then, dimRE = dimE.

Proof. Let k = dimE. Recall that RE is the intersection of all C-analytic sets
R ⊂ Ω, such that E ⊂ R. Clearly, for every such R, dimR ≥ dimE. Therefore, it
suffices to find a C-analytic R with R ⊃ E and dimR = k.

Assume without loss of generality that E 6= ∅. As a globally subanalytic set,
E = Γ1 ∪ · · · ∪ Γs is a finite union of connected smooth globally subanalytic sets.
Let x0 ∈ E be arbitrary, and let B be an open ball containing x0, such that
E ∩B = (S1 ∪ · · · ∪ St) ∩B, where each Sj is a global basic semianalytic set in Ω.
Let Rj be the C-analytic closure of Sj , j = 1, . . . , t. Since dimRj = dimSj , there
exists j1 such that dimx0

Rj1 = dimx0
E. Then, Rj1 contains a nonempty open

subset of a manifold Γi1 of dimension dimx0
E adherent to x0, for some 1 ≤ i1 ≤ s.

Hence, Rj1 ⊃ Γi1 , by arc-symmetry (Lemma 2.3). Since the collection Γ1, . . . ,Γs

is finite, it follows that E is contained in the union of finitely many C-analytic
sets Rj1 , . . . , Rjr . Set R = Rj1 ∪ · · · ∪ Rjr . Then, R is C-analytic and dimR =
maxj dimRj = maxi dimΓi = dimE. �

Let now R ⊂ Ω be a C-analytic set of dimension k > 0. By [19, Prop. 10], R
is the zero locus of a coherent sheaf of A (Ω)-ideals. It thus admits a resolution of

singularities π : R̃ → R, where R̃ is smooth of dimension k, and π is a composite
of a locally finite sequence of blowings-up with smooth centres (see [6, Thm. 13.4]).
Moreover, there is a C-analytic set S ⊂ R, of dimension dimS < k, such that R \S
is smooth of pure dimension k and π is an isomorphism over R \S. (Indeed, if Z is
a k-dimensional complex analytic set in an open neighbourhood V ∗ of Ω in Ω∗ such
that Z ∩Ω = R and Z = Z ′∪Z ′′ is its decomposition into analytic sets, where Z ′ is
of pure dimension k and dimZ ′′ < k, then one can take S = (Sing(Z ′) ∪ Z ′′) ∩Ω.)

Lemma 3.3. Let Ω be a connected real analytic submanifold of Rn. Let R ⊂ Ω be a

C-analytic set of dimension k > 0, let π : R̃ → R be its resolution of singularities,

and let S ⊂ R be a C-analytic set of dimension dimS < k, such that R \ S is

smooth of pure dimension k and π is an isomorphism over R \ S. Then, for every

connected component Ẽ of R̃, the set π(Ẽ) ∪ S is arc-symmetric in Ω.

Proof. Let Ẽ be a connected component of R̃, and let γ : (−1, 1) → R be an analytic

arc with Int(γ−1(π(Ẽ)∪S)) 6= ∅. If Int(γ−1(S)) 6= ∅, then γ((−1, 1)) ⊂ S, by arc-
symmetry of S. Otherwise, γ intersects S only at isolated points, and hence there

is a unique analytic arc γ̃ : (−1, 1) → R̃ such that γ = π ◦ γ̃. It now follows that

Int(γ̃−1(Ẽ)) = Int(γ−1(π(Ẽ)) 6= ∅, and hence γ̃((−1, 1)) ⊂ Ẽ, by arc-symmetry of

Ẽ. Consequently, γ((−1, 1)) ⊂ π(Ẽ), which completes the proof. �

Proposition 3.4. Let Ω be a connected real analytic submanifold of Rn. Let E ⊂ Ω
be an AR-closed set of dimension k > 0, and let R ⊂ Ω be its C-analytic closure.

Assume that dimR = k. Let π : R̃ → R be a desingularization of R. Then, there

exist finitely many connected components Ẽ1, . . . , Ẽt of R̃ of dimension k, such that

Regk(E) ⊂ π(Ẽ1 ∪ · · · ∪ Ẽt) ⊂ E .

Proof. Let S ⊂ R be a C-analytic set of dimension dimS < k, such that R \ S
is a k-dimensional real analytic manifold and π is an isomorphism over R \ S.
Let Γ1, . . . ,Γs be the connected components of Regk(E) (finitely many, by global
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subanalyticity of E). For every j = 1, . . . , s, Γj 6⊂ S. As π is an isomorphism over

R\S, there exists a connected component Ẽj of R̃, of dimension k, such that π(Ẽj)

contains a nonempty open subset of Γj . Then, Γj ⊂ π(Ẽj) ∪ S, by Lemmas 2.3

and 3.3. Note that π(Ẽj) is a closed set, as π is proper and Ẽj is a closed subset

of R̃. Since Γj ∩ S is nowhere dense in Γj , it follows that Γj ⊂ π(Ẽj).
On the other hand, the subanalytic arc-symmetric set π−1(E) contains a nonempty

open subset of the connected manifold Ẽj , and so Ẽj ⊂ π−1(E) and π(Ẽj) ⊂ E. It
follows that

Regk(E) ⊂ π(Ẽ1) ∪ · · · ∪ π(Ẽs) = π(Ẽ1 ∪ · · · ∪ Ẽs) ⊂ E ,

as required. (Note that there may be some repetitions among the Ẽ1, . . . , Ẽs.) �

By noetherianity of ARC -topology, one can also define the ARC-closure of an

arbitrary set S ⊂ Ω, denoted S
ARC

, as the smallest (with respect to inclusion)
ARC -closed subset of Ω that contains S.

Remark 3.5. Unfortunately, in the subanalytic context, the AR- and ARC -
closure behaves in a much less controlled way than in the semialgebraic setting
of [14]. In particular, for an arbitrary globally subanalytic set S, one may have

dimS
AR

> dimS. Indeed, consider, for example, S = {(x, y) ∈ R2 : y = sinx,
−1 ≤ x ≤ 1}. Then, S is globally subanalytic in R2 as a bounded subanalytic set,
however by analytic continuation any arc-symmetric set in R2 containing S must

contain the whole graph of the sine function as well. Thus, S
AR

= R2, hence also

S
ARC

= R2. Note that S is also C-semianalytic, since sinx is a global real analytic
function on R.

Nonetheless, the topological dimension (as a subanalytic set) of any ARC-closed
set coincides with its ARC-Krull dimension, at least in the relatively compact
setting, as shown below. For a non-empty ARC-closed set E we define its Krull

dimension as

dimK E = sup{l ∈ N : ∃E0  E1  · · ·  El ⊂ E, where Ej are ARC−irreducible} .

By convention, dim∅ = dimK ∅ = −1.

Theorem 3.6. Let Ω be a relatively compact connected real analytic submanifold

of Rn. If E is a non-empty ARC-closed set in Ω, then

dimKE = dimE ,

where dimE is the supremum of dimensions of real analytic submanifolds of E.

Proof. By Proposition 4.6 below, we have dimKE ≤ dimE. For the proof of the
other inequality, we proceed by induction on k = dimE. The base case being clear,
assume k ≥ 1. By the Good Directions Lemma in o-minimal structures (see [10, 4.9]
or [9, Thm.VII.4.2]), there is a k-dimensional linear subspace U of Rn such that the
orthogonal projection π : Rn → U has finite fibres when restricted to E. Suppose
U is spanned by vectors u1, . . . , ud in Rn, and let V = span{u2, . . . , ud}. Then, the
set F = E ∩ π−1(V ) is ARC-closed as the intersection of two ARC -closed sets,
and of dimension k − 1. By the finiteness of decomposition into ARC-irreducible
components, at least one such component of F is of dimension k − 1. �
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4. Relatively compact setting

In this section, we assume that Ω is a relatively compact connected real analytic
submanifold of Rn. Then, real analytic subsets of Ω are globally subanalytic, and
hence C-analytic subsets of Ω are ARC-closed.

Proposition 4.1. Let E ∈ ARC(Ω) be ARC-irreducible. Then, there exists a

unique C-irreducible C-analytic set R ⊂ Ω, such that E ⊂ R, dimR = dimE, and

R ⊂ S for every C-analytic set S ⊂ Ω containing E.

Proof. Let R be the C-analytic closure of E. By Proposition 3.2, R is of dimension
dimE. Moreover, R is C-irreducible, for if R = R1∪R2 for some proper C-analytic
subsets R1, R2, then E = (E ∩R1) ∪ (E ∩R2) is ARC -reducible. �

Lemma 4.2. Let E ⊂ Ω be an ARC-closed set of dimension k > 0, and let

E = Γ1 ∪ · · · ∪Γs be its partition into smooth connected globally subanalytic sets. If

j ∈ {1, . . . , s} is such that Γj 6⊂ Regk(E), then dimΓj
ARC

= dimΓj < k.

Proof. Pick a point x0 ∈ Γj \ Regk(E). Let B be an open ball centered at x0

such that B ∩ Regk(E) = ∅. Since E and B are C-semianalytic, there exists a
C-analytic R ⊂ Ω, of dimension dimx0

Γj , such that Γj ∩B ⊂ R. Then, Γj ⊂ R, by

Lemma 2.3, and so Γj
ARC

⊂ R, as R is ARC -closed. Consequently, dimΓj
ARC

≤
dimR = dimΓj < k. �

Corollary 4.3. Let E ∈ ARC(Ω) be ARC-irreducible, of dimension k > 0. If

F ∈ ARC(Ω) and Regk(E) ⊂ F ⊂ E, then F = E.

Proof. If F ⊃ Regk(E), then F ⊃ Regk(E), since arc-symmetric sets are closed in
Euclidean topology. Let E = Γ1 ∪ · · · ∪ Γs be a finite partition of E into smooth
connected globally subanalytic sets. If F 6= E, there exists j ∈ {1, . . . , s} such that

Γj 6⊂ F . Then, Γj 6⊂ Regk(E). Let Γj1 , . . . ,Γjq be all such strata. By Lemma 4.2,

dimΓj1 ∪ · · · ∪ Γjq

ARC
< k, and hence Γj1 ∪ · · · ∪ Γjq

ARC
6= E. It follows that

E = F ∪ Γj1 ∪ · · · ∪ Γjq

ARC
is a decomposition of E into nonempty proper ARC -

closed subsets; a contradiction. �

In the relatively compact setting, we can refine Proposition 3.4 as follows. This
is a C-semianalytic analog of [14, Thm. 2.6].

Theorem 4.4. Let E ∈ ARC(Ω) be an ARC-irreducible set of dimension k > 0,

and let R ⊂ Ω be its C-analytic closure. Let π : R̃ → R be a desingularization of

R. Then, there exists a unique connected component Ẽ of R̃ of dimension k, such
that

Regk(E) ⊂ π(Ẽ) ⊂ E .

Proof. Let S ⊂ R be a C-analytic set of dimension dimS < k, such that π is
an isomorphism over R \ S, and R \ S is a k-dimensional real analytic mani-
fold. Let {Cλ}λ∈Λ be the locally finite family of its connected components. By
[1, Prop. 5.3.5], each Cλ is C-semianalytic.

Note that, by Lemma 2.3, for every λ ∈ Λ, E ⊃ Cλ or else E ∩ Cλ is nowhere
dense in Cλ and dimx E < k for every x ∈ E ∩ Cλ. Since dimE ∩ S < k, Regk(E)
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contains a nonempty open subset of R \ S, and so there is at least one λ such that
E ⊃ Cλ. It follows that there exists a nonempty ΛE ⊂ Λ such that

(4.1) E ∩ (R \ S) =
⋃

λ∈ΛE

Cλ ∪ (
⋃

λ∈Λ\ΛE

Cλ ∩ E(<k)) ,

where E(<k) = {x ∈ E : dimx E ≤ k − 1}. Moreover, by [1, Prop. 5.3.8], the
set E(<k) and hence all the disjoint summands of the right hand side of (4.1) are
C-semianalytic.

Let Γ1, . . . ,Γs be the connected components of Regk(E). For every j = 1, . . . , s,
let Λj = {λ ∈ Λ : Cλ ⊂ Γj}. Then,

Γj =
⋃

λ∈Λj

Cλ ∪ (Γj ∩ S) ,

and as Γj ∩ S is nowhere dense in Γj , then

Γj =
⋃

λ∈Λj

Cλ =
⋃

λ∈Λj

Cλ .

Moreover, ΛE = Λ1 ∪ · · · ∪ Λs, and hence

Regk(E) = Γ1 ∪ · · · ∪ Γs =
⋃

λ∈ΛE

Cλ .

Let Ẽδ be a connected component of R̃, of dimension k. Let λ ∈ Λ be such

that π(Ẽδ) contains a nonempty open subset of Cλ. Then, Cλ ⊂ π(Ẽδ) ∪ S, by

Lemmas 2.3 and 3.3. Since Cλ∩S = ∅, we obtain Cλ ⊂ π(Ẽδ). In fact, Cλ ⊂ π(Ẽδ),

since π(Ẽδ) is closed in R as the image of a closed set by a proper mapping. On

the other hand, if π(Ẽδ) contains no open subset of Cλ, then rkxπ < k for all

x ∈ Ẽδ ∩ π−1(Cλ), whence π(Ẽδ)∩Cλ ⊂ S and so π(Ẽδ)∩Cλ = ∅, as Cλ ⊂ R \ S.

It thus follows from (4.1) that (π(Ẽδ) ∪ S) ∩ E = (π(Ẽδ) ∩ E ∩ (R \ S)) ∪ (E ∩ S)
is C-semianalytic, and hence ARC -closed.

Let now λ0 ∈ ΛE be arbitrary and let Ẽ0 be a connected component of R̃

satisfying π(Ẽ0) ⊃ Cλ0
. We claim that then π(Ẽ0) ⊃ Cλ for all λ ∈ ΛE . Indeed,

for else, if Λ0 = {λ ∈ ΛE : Cλ ⊂ π(Ẽ0)} is a proper subset of ΛE, then
⋃

λ∈ΛE\Λ0

Cλ ⊂ π(
⋃

δ∈∆

Ẽδ) ,

for some family {Ẽδ}δ∈∆ of components of R̃ different from Ẽ0. As the family

{π(Ẽδ) ∩ E ∩ (R \ S)}δ∈∆ is locally finite, the set (π(
⋃

δ∈∆ Ẽδ) ∪ S) ∩ E is C-
semianalytic, and hence ARC -closed. We thus get a decomposition of E into
proper ARC -closed subsets

E = [(π(Ẽ0) ∪ S) ∩E] ∪ [(π(
⋃

δ∈∆

Ẽδ) ∪ S) ∩ E] ,

contradicting the ARC -irreducibility of E.
On the other hand, the arc-symmetric set π−1(E) contains a nonempty open

subset of the manifold Ẽ0, and so Ẽ0 ⊂ π−1(E) and π(Ẽ0) ⊂ E, which completes
the proof. �
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Remark 4.5. Let E ∈ ARC(Ω) be an ARC -irreducible set. Let R, π : R̃ → R,
and S ⊂ R be as above. Note that, by Lemma 4.2 and the above proof, one actually

gets that for a certain (unique) connected component Ẽ of R̃

E = (π(Ẽ) ∪ S) ∩ E .

Proposition 4.6. Let E,F ∈ ARC(Ω), F  E, and suppose that E is ARC-

irreducible of dimension k > 0. Then, dimF < dimE.

Proof. Suppose to the contrary that dimF = k. Let R ⊂ Ω be the C-analytic

closure of E and let π : R̃ → R be its desingularization. By Theorem 4.4, there

is a unique connected component Ẽ of R̃, such that π(Ẽ) ⊃ Regk(E). Then, the

subanalytic arc-symmetric set π−1(F ) contains a nonempty open subset of Ẽ, and

hence Ẽ ⊂ π−1(F ), by Lemma 2.3. Consequently, π(Ẽ) ⊂ F , hence F ⊃ Regk(E),
and so F = E, by Corollary 4.3; a contradiction. �

Proposition 4.7. For every E ∈ ARC(Ω) of dimension k > 0, there exists F ∈
ARC(Ω) such that dim(E ∩ F ) < k and E \ F is a k-dimensional manifold.

Proof. Let R be the C-analytic closure of E. Then, R is of dimension k, and there
is a C-analytic set S ⊂ Ω, of dimension dimS < k, such that R \ S is smooth of
pure dimension k. Set F = E ∩ S. �

Remark 4.8. Note that, in general, one cannot expect that RegkE = E \ F for
some ARC -closed set F . Indeed, this may not be true even if E is real algebraic.

5. Arc-symmetric sets are zero loci of arc-analytic functions

Let E ⊂ Rn be non-empty. Recall that a function f : E → R is called arc-

analytic, when f ◦ γ is an analytic function for every analytic arc γ : (−1, 1) → E.
It is called a globally subanalytic function, when the graph Γf of f is a globally
subanalytic set in Rn+1.

It is well known that every globally subanalytic arc-analytic function is continu-
ous in the Euclidean topology (see, e.g., [5, Lem. 6.8]). Moreover, by a straightfor-
ward adaptation of [14, Prop. 5.1], one has the following.

Remark 5.1. Let E ∈ AR(Rn) be non-empty, and let f : E → Rm be a globally
subanalytic function whose all components are arc-analytic. Then

(i) Γf ∈ AR(Rn × Rm).
(ii) If Z ∈ AR(Rm), then f−1(Z) ∈ AR(Rn).

We are now ready to prove our main result. This is a C-semianalytic analog of
[2, Thm. 1] and the proof below is a direct adaptation of our argument from [2].

Theorem 5.2. Let Ω be a relatively compact connected real analytic submanifold in

Rn, and let E ∈ ARC(Ω). There exists a globally subanalytic arc-analytic function

f : Ω → R, such that E = f−1(0).

Proof. We argue by induction on dimension of E. If dimE ≤ 0, then E is a
finite set, and hence the zero locus of a polynomial function on Rn restricted to Ω.
Suppose then that dimE = k > 0, and every ARC -closed set in Ω of dimension
less than k is the zero locus of a globally subanalytic arc-analytic function on Ω.
Assume without loss of generality that E is ARC -irreducible.
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Let R ⊂ Ω be the C-analytic closure of E. Then, R is k-dimensional and C-

irreducible, by Proposition 4.1. Let π : Ω̃ → Ω be an embedded desingularization of

R, and let R̃ denote the strict transform of R by π. Let S ⊂ R be a C-analytic set,
of dimension dimS < k, such that R \ S is smooth of pure dimension k, and π is
an isomorphism over Ω \S. Since E ∩S is an ARC -closed set of dimension strictly
less than k, the inductive hypothesis implies that there is a globally subanalytic
arc-analytic function h : Ω → R such that E ∩ S = h−1(0).

By Theorem 4.4, there is a unique connected component Ẽ of R̃ such that

Regk(E) ⊂ π(Ẽ) ⊂ E. Let D = π−1(S) and Z = Ẽ ∩ D. Let σ : Ω̂ → Ω̃ be

the blowing-up of Ω̃ at the C-analytic set Z. Let Ê and D̂ denote the strict trans-

forms of Ẽ and D by σ, respectively. Since Ẽ and D have only normal crossings

(cf. [6, Thm.1.6]), Ê and D̂ are disjoint subsets of Ω̂. The sets Ẽ and D are both

C-analytic, and hence so are Ê and D̂. We may thus choose non-negative analytic

functions v1, v2 ∈ A (Ω̂), such that v−1
1 (0) = Ê and v−1

2 (0) = D̂. Then, v1 + v2 > 0

on Ω̂ as Ê ∩ D̂ = ∅, and so ϕ := v1/(v1 + v2) defines an analytic function on Ω̂.

Note that ϕ ≥ 0 on Ω̂, ϕ|
Ê

≡ 0, and ϕ|
D̂

≡ 1. Finally, set v := v1 ·v2. Then,

v ∈ A (Ω̂), v−1(0) = Ê ∪ D̂, and v ≥ 0 on Ω̂.

Now, define f̂ : Ω̂ → R by the formula

f̂ := (ϕ · (h ◦ π ◦ σ))2 + v2 .

Note that f̂ is an arc-analytic function on Ω̂, f̂ = (h ◦ π ◦ σ)2 on D̂, f̂ = 0 on Ê,

and f̂ is strictly positive outside Ê ∪ D̂.

Next, we compose f̂ with σ−1 in order to get an arc-analytic function on Ω̃.

More precisely, define f̃ : Ω̃ → R as

f̃(y) :=

{
((f̂ ◦ σ−1) · (h ◦ π))(y), y /∈ Z

0, y ∈ Z .

To see that f̃ is arc-analytic, let γ̃ : (−1, 1) → Ω̃ be an analytic arc not contained

in Z, and let γ̂ : (−1, 1) → Ω̂ be its lifting by σ. Then, σ ◦ γ̂ = γ̃. We claim that

(5.1) f̃ ◦ γ̃ = (f̂ ◦ γ̂) · (h ◦ π ◦ γ̃) ,

which implies that f̃ ◦ γ̃ is analytic. Indeed, if γ̃(t) /∈ Z, then (5.1) holds because

(f̂ ◦ σ−1 ◦ γ̃)(t) = (f̂ ◦ σ−1 ◦ σ ◦ γ̂)(t) = (f̂ ◦ γ̂)(t). If, in turn, γ̃(t) ∈ Z, then
(h◦π ◦ γ̃)(t) = 0, by definition of h, and hence both sides of (5.1) are equal to zero.

Now, we compose f̃ with π−1 to get an arc analytic function on Ω. More precisely,
we define f : Ω → R as

f(x) :=

{
(f̃ ◦ π−1)(x), x /∈ S

h3(x), x ∈ S .

To see that f is arc-analytic, let γ : (−1, 1) → Ω be an analytic arc not contained

in S. Let γ̃ : (−1, 1) → Ω̃ be the lifting of γ by π, and let γ̂ : (−1, 1) → Ω̂ be the
lifting of γ̃ by σ. Then, π ◦ γ̃ = γ, and σ ◦ γ̂ = γ̃. We claim that

(5.2) f ◦ γ = f̃ ◦ γ̃ ,

which implies that f ◦ γ is analytic. Indeed, if γ(t) 6∈ S, then (5.2) holds because

(f̃ ◦ π−1 ◦ γ)(t) = (f̃ ◦ π−1 ◦ π ◦ γ̃)(t) = (f̃ ◦ γ̃)(t). If, in turn, γ(t) ∈ S ∩ π(Ẽ), then
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h(γ(t)) = 0 and hence (f ◦ γ)(t) = 0. But γ̃(t) ∈ Z, and hence (f̃ ◦ γ̃)(t) = 0 as

well. Finally, if γ(t) ∈ S \ π(Ẽ), then γ̃(t) /∈ Z and γ̂(t) ∈ D̂; hence, by (5.1), we
have

(f̃ ◦ γ̃)(t) = ((f̂ ◦ γ̂) · (h ◦ π ◦ γ̃))(t) =
(
((h ◦ π ◦ σ)2 ◦ γ̂) · (h ◦ π ◦ γ̃)

)
(t)

=
(
(h ◦ π ◦ γ̃)2 · (h ◦ π ◦ γ̃)

)
(t) = (h ◦ π ◦ γ̃)3(t) = (h ◦ γ)3(t) = (f ◦ γ)(t) .

We shall now calculate the zero locus of f .

f−1(0) = {x ∈ Ω \ S : (f̃ ◦ π−1)(x) = 0} ∪ {x ∈ S : h3(x) = 0}

= π
(
{y ∈ Ω̃ \D : f̃(y) = 0}

)
∪ (E ∩ S)

= π
(
{y ∈ Ω̃ \D : ((f̂ ◦ σ−1) · (h ◦ π))(y) = 0}

)
∪ (E ∩ S)

= π
(
{y ∈ Ω̃ \D : (f̂ ◦ σ−1)(y) = 0}

)
∪ (E ∩ S)

=
(
(π ◦ σ)({z ∈ Ω̂ \ σ−1(D) : f̂(z) = 0})

)
∪ (E ∩ S)

= (π ◦ σ)(Ê \ σ−1(D)) ∪ (E ∩ S)

= π(Ẽ \D) ∪ (E ∩ S) = π(Ẽ) ∪ (E ∩ S) = (π(Ẽ) ∪ S) ∩E .

The latter set, by Remark 4.5, is equal to E, which completes the proof. �

6. Nash globally subanalytic arc-symmetric sets

Let Ω be a real analytic manifold. Let E ⊂ Ω be a subanalytic set, and let x ∈ Ω.
Suppose first that E is of pure dimension k. We say that E is Nash at x, when
there exists a neighbourhood U of x in Ω and an analytic set S ⊂ U , of dimension
k, such that E ∩U ⊂ S. Suppose now that E is not pure-dimensional. We say that
E is Nash at x, when E is a finite union of pure-dimensional subanalytic sets each
of which is Nash at x. We say that E is a Nash subanalytic set in Ω, when E is
Nash at each point of Ω.

Theorem 6.1. Let Ω be a connected real analytic submanifold of Rn, and let E ∈
AR(Ω). If E is Nash subanalytic, then E is semianalytic in Ω.

Proof. We proceed by induction on dimension of E. If dimE ≤ 0, then E is a
finite set and hence the zero locus of a polynomial function on Rn (restricted to
Ω). Suppose then that dimE = k > 0, and that every Nash globally subanalytic
arc-symmetric subset of Ω of dimension less than k is semianalytic in Ω.

Since E is closed in Ω, it suffices to show that E is semianalytic in a sufficiently
small neighbourhood of each of its points. Pick an arbitrary ξ ∈ E. Without loss
of generality, we may assume that dimξ E = k. For j = 0, . . . , k, let E(j) = {x ∈

E : dimx E = j}, and let E∗ =
⋃k−1

j=0 E
(j). By Nashness of E, one can choose an

open ball U centered at ξ, such that there exist real analytic sets R and T in U ,
with the following properties: dimR = k, E ∩ U ⊂ R, dimT < k, E∗ ∩ U ⊂ T .
Moreover, after shrinking U if needed, there is an analytic set S ⊂ R, of dimension
dimS < k, such that R \ S is smooth of pure dimension k.

Let now {Sλ}λ∈Λ be a semianalytic stratification of U , compatible with R, S,
and T . Assume Λ is finite, after further shrinking U if needed. Let ΛR = {λ ∈
Λ : Sλ ⊂ R}. Note that, for every λ ∈ ΛR, we have Sλ ⊂ E, or else E ∩ Sλ
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is nowhere dense in Sλ and dimxE < k for all x ∈ E ∩ Sλ, by Lemma 2.3. Let
ΛE = {λ ∈ ΛR : Sλ ⊂ E}. We thus obtain

(6.1) R \ E = (
⋃

λ∈ΛR

Sλ) \ E =
⋃

λ∈ΛR

(Sλ \ E)

=
⋃

λ∈ΛR\ΛE

(Sλ \ E) =
⋃

λ∈ΛR\ΛE

Sλ \ E =
⋃

λ∈ΛR\ΛE

Sλ .

By a well known characterization of semianalyticity (see, e.g., [4, Thm. 2.13]), to
prove that E ∩ U is semianalytic it suffices to show that (E ∩ U) \ IntR(E) is

semianalytic of dimension less than k, where IntR(E) = E \R \ E is the interior of
E in R. It follows from (6.1) that

(E ∩ U) \ IntR(E) = E ∩R \ E = E ∩
⋃

λ∈ΛR\ΛE

Sλ = E ∩ (S ∪ T ) .

The latter is a Nash AR-closed subset of U of dimension less than k, and hence
semianalytic by inductive hypothesis. �

For the next result, we shall adapt the concept of a q-grid from [7]. Given a
positive integer q, a q-grid centered at ξ = (ξ1, . . . , ξn) ∈ R

n is defined as the union
of coordinate hyperplanes

Σ =

n⋃

j=1

⋃

k∈Z

{xj = ξj + k/q} .

Let {Cλ}λ∈Λ denote the family of open cubes induced by Σ (i.e., the connected
components of Rn \Σ). We say that Σ is subordinate to an open cover U = {Uι}ι∈I

of Rn, when for every λ ∈ Λ there exists ι ∈ I with Cλ ⊂ Uι. Given a subanalytic set
E ⊂ Rn, we say that Σ is in general position with respect to E, when dimxΣ ∩ E <
dimxE for every x ∈ E.

Remark 6.2. Let Ω be a relatively compact open set in Rn. It is evident from the
proof of [7, Lem. 2.4] that for every locally finite open cover U of Rn and for every
closed globally subanalytic set E ⊂ Rn there exists a positive integer q and a point
ξ ∈ Rn such that, up to a linear coordinate change in Rn, the q-grid Σ centered at
ξ is subordinate to U on Ω and in general position with respect to E.

Theorem 6.3. Let E be a Nash globally subanalytic arc-symmetric set in Rn.

Then, for every relatively compact open Ω ⊂ Rn, there exists a continuous globally

subanalytic function f : Ω → R and a q-grid Σ in Rn, such that

(i) dimxΣ ∩ E < dimxE for all x ∈ E
(ii) f is arc-analytic on Ω \ Σ, and
(iii) E ∩ Ω = f−1(0).

Proof. By Theorem 6.1, for every point x ∈ Rn, there exists a relatively compact
connected open neighbourhood Ux of x in Rn such that E ∩ Ux ∈ ARC(U

x). Let
U = {Uι}ι∈I be a locally finite subcover of Rn chosen from the open cover {Ux}x∈E.
Let Ω be an arbitrary relatively compact nonempty open set in Rn. By Remark 6.2,
there is a q-grid Σ′ in Rn such that Σ′ is in general position with respect to E and
the covering C = {Cλ}λ∈Λ of Ω by the closed cubes induced by Σ′ is subordinate
to U .
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Given λ ∈ Λ, pick ι ∈ I such that Cλ ⊂ Uι. Let v ∈ A (Uι) be such that
v−1(0) = Σ′ ∩Uι. If E ∩Cλ = ∅, set fλ := v. Otherwise, let E ∩Uι = E1 ∪ · · · ∪Es

be the decomposition into ARC -irreducible components. By Theorem 5.2, for each
j = 1, . . . , s, there is a globally subanalytic arc-analytic function fj : Uι → R such

that f−1
j (0) = Ej . Let fλ := v·f1 . . . fs. Then, fλ : Uι → R is a globally subanalytic

arc-analytic function and f−1
λ (0) = (E ∪ Σ′) ∩ Uι.

Finally, define fΣ′ : Ω → R as fΣ′ :=
⋃

λ∈Λ fλ|Cλ
. This fΣ′ is continuous,

globally subanalytic, arc-analytic outside Σ′, and f−1
Σ′ (0) = E ∪ Σ′.

To complete the proof, note that the q-grid Σ′ can be chosen so that the q-grid
Σ′′ := {(x1 +

1
kq
, . . . , xn + 1

kq
) : (x1, . . . , xn) ∈ Σ′} is also subordinate to U on Ω

and in general position with respect to E, for some k ∈ Z+. Let fΣ′′ : Ω → R be
the corresponding continuous globally subanalytic function with f−1

Σ′′ (0) = E ∪ Σ′′

constructed as above. Then, the function f := fΣ′ + fΣ′′ is continuous, globally
subanalytic, and arc-analytic outside the kq-grid

Σ := {(x1 +
l1
kq

, . . . , xn +
ln
kq

) : (x1, . . . , xn) ∈ Σ′, l1, . . . , ln ∈ {0, . . . , kq − 1}} .

Moreover, f−1(0) = E. �

We believe there are good reasons to expect that, in fact, the above result is true
for all arc-symmetric globally subanalytic sets thanks to the following conjecture.

Conjecture 6.4. Every arc-symmetric globally subanalytic subset of a real analytic

manifold is Nash subanalytic.
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