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Abstract

We prove the following criterion for flatness of Nash morphisms: Let f::X: — Y, be a
Nash morphism of reduced Nash germs with X: of pure dimension and Y, smooth of dimen-
sion n. Then f: is flat if and only if the nth analytic tensor power Ox:Rqy, - ®q,, COxc is a
torsion-free (y,-module.
© 2004 Elsevier B.V. All rights reserved.

n times

MSC: 32C07; 13Cl11

1. Main result

Let Q be an open set in C™. An analytic function f € ((Q) is called a Nash function
if it is algebraic over the ring of regular functions on Q. An analytic set X is a Nash
set if it can locally be defined by Nash functions, and Nash mappings are analytic
mappings whose all components are Nash functions (see Section 3 for details). Given
an analytic mapping f:X — Y of analytic spaces, with f(&) =1, let f::X: — ¥,
denote the germ of f at &, and let fé{{l,.}} :Xé{{’,]; — Y, be the germ at &l =(¢&,..., &) of
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the induced canonical map from the i-fold fibre power of X over Y. The main result
of this paper is the following criterion for flatness of Nash morphisms:

Theorem 1.1. Let f::X: — Y, be a Nash morphism of Nash germs, where X: is
reduced of pure dimension and Y, is smooth of dimension n. Then the following
conditions are equivalent:

() fe is flat;

(ii) the canonical map fE{{'ﬁ :Xé{{,ﬁ — Y, has no algebraic vertical components.

Remark 1.2. The equivalence can alternatively be formulated as follows:

feis flat & Oy (@ (® (x.¢ is a torsion-free (y,-module.
Yoy Yoy
~—_— —

n times

(Compare with Auslander’s Theorem 2.2 below.)

The Nash category fits between the algebraic and analytic categories in a way that
allows use of transcendental methods to obtain strong algebraic results. Geometrically,
Nash sets are built, locally, from analytic branches of algebraic sets. For example, con-
sider a Nash subset of the unit ball in C? defined by the equation y(1++/1+x)—1=0,
where /- is a branch of the square root satisfying v/1 = 1. Then X is an analytic
branch at the origin of an algebraic curve xy? + 2y + 1 =0.

The proof of our result proceeds in three main steps: Firstly, we show that (isolated
or embedded) irreducible components of Nash sets are Nash themselves (Lemma 4.1
and Proposition 5.1). Secondly, observe that every Nash mapping of Nash sets is
regular in the sense of Gabrielov (Proposition 5.4). Finally, the result follows from the
Galligo—Kwiecinski criterion for flatness (see Section 2).

2. Motivation

This paper is concerned with the study of the relationship between degeneracies of
the family of fibres of an analytic mapping (as expressed by a failure of flatness) and
the existence of vertical components in fibre powers of the mapping. There are in fact
two natural notions of a vertical component:

Let fz:X: — Y, be a morphism of germs of analytic spaces. An irreducible (isolated
or embedded) component W of X: is called algebraic vertical if there exists a nonzero
element a € Oy, such that (the pullback of) a belongs to the associated prime p in
Oy, corresponding to W. Equivalently, W is algebraic vertical if an arbitrarily small
representative of W is mapped into a proper analytic subset of a neighbourhood of #
in Y. We say that W is geometric vertical if an arbitrarily small representative of W
is mapped into a nowhere dense subset of a neighbourhood of # in Y, or equivalently,
if the hypergerm (in the sense of Galligo and Kwiecinski, see [7]) f (W) has empty
interior in ¥, with the transcendental topology.
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The concept of a vertical component comes up naturally as an equivalent of torsion
in algebraic geometry and the two notions of a vertical component coincide in the
algebraic case (over an irreducible target). However, it is no longer so in the analytic
category. In principle, the existence of the algebraic vertical components is a weaker
condition than the presence of the geometric vertical ones. Indeed, any algebraic ver-
tical component (over an irreducible target) is geometric vertical, since a proper an-
alytic subset of a locally irreducible analytic set has empty interior. The converse is
not true though, as can be seen in the following example of Osgood (cf. [8, Kap.II,
Section 5]):

f:C* 5 (x,p) — (x,xy,xye’) € C.

Here the image of an arbitrarily small neighbourhood of the origin is nowhere dense
in C3, but its Zariski closure has dimension 3 and therefore the image is not contained
in a proper locally analytic subset of the target.

The geometric vertical components have proved to be a powerful tool in analytic geo-
metry (see [7,11,12]). On the other hand, the algebraic approach, introduced in [1,2],
has an advantage that all the statements about algebraic vertical components (as opposed
to geometric vertical) can be restated in terms of torsion freeness of the local rings:

Remark 2.1. f::X: — Y, has no (isolated or embedded) algebraic vertical components
if and only if the local ring Uy is a torsion-free ()y,,-module.

(This follows from “prime avoidance”, see e.g. [6, Section 3.2].)

Also, it seems plausible that algebraic properties of analytic morphisms, like flatness,
could be controlled by means of algebraic vertical components rather than the geometric
vertical ones. Some results in this direction were obtained in [2]. Here we give the
affirmative answer for Nash mappings.

The study of vertical components originates in the following fundamental result of
Auslander.

Theorem 2.2 (Auslander [4, Theorem 3.2]). Let R be an unramified regular local ring
of dimension n > 0 and let M be a finite R-module. Then M is R-free if and only if
the nth tensor power M®" is a torsionfree R-module.

(Auslander’s result was later extended by Lichtenbaum [13] to arbitrary regular local
rings.)

Recall that in the case of finite modules, freeness is equivalent to flatness. Also, for
finite modules M and N over a local analytic algebra R, their analytic tensor product,
denoted by M&g N, equals the ordinary one, M ®g N. In particular, if f::X: — Y,
is a finite morphism of germs of analytic spaces, with ¥, smooth of dimension #,
then Theorem 2.2 asserts that f: is flat if and only if the local ring Oy sty =
Oy &qy, -+ - ey, Oxe of the nth fibre power of X; over Y, is a torsion-free (y,,-module

n times

(or, equivalently, Xé{{';]}' has no algebraic vertical components).
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Recently, a remarkable generalization of Theorem 2.2 to the case of nonfinite map-
pings was obtained by Galligo and Kwiecinski.

Theorem 2.3 (Galligo and Kwiecinski [7, Theorem 6.1]). Let f::X: — Y, be a mor-
phism of germs of analytic spaces. Let X be reduced of pure dimension and let Y,
be smooth of dimension n. Then the following conditions are equivalent:

(i) fz is flat;
(ii) the canonical map f g{{"}; :XE{{'Z,}; — Y, has no (isolated or embedded) geometric
vertical components. )

(The result was first proved in the algebraic case, for n =2 and for arbitrary X, by
Vasconcelos, see [19, Proposition 6.1].)

Note that Theorem 2.3 cannot be rephrased in terms of torsion freeness of analytic
tensor powers of (¢, as the vertical components in question are geometric and not
algebraic. Also, we do not know a proof of the algebraic version of Theorem 2.3 (for
n > 2) that does not involve transcendental methods.

In [2] we conjectured that the above theorem can be restated in terms of the algebraic
vertical components, which should eventually lead to such a proof. That is, we suggest
the following:

Conjecture 2.4. Let f::X: — Y, be a morphism of germs of analytic spaces. Let
Xe be reduced of pure dimension and let Y, be smooth of dimension n. Then the
following conditions are equivalent:

(1) fe is flat;
. yin)

(i) the canonical map S :Xé{{'j,} — Y, has no algebraic vertical components.

We believe there are good reasons to expect the conjecture be true. First, as we
showed in [2, Theorem 2.2], the presence of the isolated geometric vertical components

in Xi{{'z]}’ is equivalent to the existence of isolated algebraic vertical components in the
same fibre power. Secondly, the existence of an (isolated or embedded) geometric
vertical component in the nth fibre power XCV{{'Z}}’ implies that there is an (isolated or

embedded) algebraic vertical component in some fibre power X, f{gi];.
The main result of this paper is a step towards a proof of the general Conjecture 2.4.

3. Toolbox

For reader’s convenience, most of the definitions and tools used later on are gathered
in this section. We start with recalling the Nash category terminology (see [18] for
details):

Let Q be an open subset of C”, and let x = (xy,...,x,) be a system of m complex
variables. A function f analytic on Q is called a Nash function at x, € Q if there exist
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an open neighbourhood U of xy in Q and a polynomial P(x, y) € C[x, y], P # 0, such
that P(x, f(x)) =0 for x € U. An analytic function is a Nash function on Q if it is a
Nash function at every point of Q. An analytic mapping f = (f1,..., fn): Q2 — C" is
a Nash mapping if each of its components is a Nash function on Q.

A subset X of Q is called a Nash subset of Q if for every xp € Q there exist an
open neighbourhood U of xy in Q and Nash functions fi,..., fy on U, such that
XNU={xeU: fi(x)=---= fi(x)=0}. A germ X; at £€C" is a Nash germ if
there exists an open neighbourhood U of & in C” such that X N U is a Nash subset
of U. Equivalently, X is a Nash germ if its defining ideal can be generated by power
series algebraic over the polynomial ring C[x]; that is, Ox: = C{x}/(f1,..., fi)C{x}
with f; € C(x), j=1,...,s, where C(x) denotes the algebraic closure of C[x] in C[[x]].
An analytic mapping f:Q — C” (resp. germ f: of f at {€ Q) is a Nash mapping
(resp. Nash morphism) if and only if its graph is a Nash subset of Q x C" (resp. a
Nash germ at (&, f(&))e Q x C").

Next, we sketch some consequences of Hironaka’s division algorithm (for a thorough
treatment we refer to [5]). We use the following notation: If f = (f1,...,0mn) € N,
then x# denotes the monomial x}' ooxbr . For feC{x}, write f(x) =3 pcnm fpxb
with f € C. Define the support of f € C{x} by supp f={peN": fg # 0}, and the
initial exponent of f by exp(f) = min{f:p €supp f}, where the minimum is taken
with respect to the total ordering of N™ given by the lexicographic ordering of the

(m + 1)-tuples (B1 + -+ B, Brs- -, Bm)-
Given an ideal 7 in C{x}, the diagram of initial exponents of I is defined as

N(I) = {exp(f): f €I\ {0}} C N".

Let C{x}""={f e C{x}: supp fNN(I)=0} denote the set of series supported outside
the diagram 91(/). Then the natural mapping x : C{x}>*/) — C{x}/I is surjective (see
[10, Section 6, Proposition 9]).

Remark 3.1. The above result implies in particular that if /" ¢ / then f = f modulo
1 for some f with exp(f) & ().

Let KK be an algebraically closed field. We will use Artin’s approximation theorem
in the following form:

Theorem 3.2 (Artin [3, Theorem 1.7]). Let f(x,y) =0 be a system of polynomial
equations in x = (x1,...,x,) and y = (y1,...,yy) with coefficients in K. Let ¢ be
an integer. Given a formal power series solution y(x) € K[[x]], there is an algebraic
solution y(x) € K(x) such that (x) = y(x) modulo (x)°.

Finally, recall the notion of regularity in the sense of Gabrielov: A morphism
fe:Xe — Y, of germs of analytic spaces is called Gabrielov regular if, for every
irreducible component W of X, dim, f(Z)=dim, f(Z) for an arbitrarily small repre-
sentative Z of W at &, where f(Z) denotes the Zariski closure of f(Z) in a represen-
tative of ¥ at 5 (see, e.g., [17, Section 1]).
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4. Algebraic lemma

Let x=(x1,...,x,) be a system of m complex variables, and let R be either the ring
of convergent power series C{x} or the ring of formal power series C[[x]] in variables
x. Let, as before, C(x) denote the algebraic closure of C[x] (i.e., the Henselization of
Clx]()) in C[[x]]. The following result can be derived from [16, Section 45, Exercise
4] but we give a simple alternative proof.

Lemma 4.1. Let I be an ideal in C{x) and let I = Q; N --- N O, be its primary
decomposition in C(x). Then the extended ideals Q;R (j =1,...,t) are primary, and
hence IR =(Q\R)N---N(QR) is a primary decomposition of IR in R.

Proof. First, we shall show that prime ideals in C(x) extend to prime ideals in R.
Suppose P = (f1,..., fs) is an ideal in C(x) such that PR is not prime. Then there
exist two series p(x) and g(x) in R such that pg€ PR, p ¢ PR, and g ¢ PR.

As pq € PR, we have pg = fih| + --- + fshs for some hy,...,h; € R. Without loss
of generality can assume that exp(p) ¢ JU(P) and exp(q) ¢ N(P). Indeed, since
p,q & PR, then by Remark 3.1, p = p and ¢ = ¢ modulo PR for some p, § whose
initial exponents lie outside the diagram J(P).

Consider the following system of polynomial equations

Pl(x, yl) =0
(1)
Ps(x, ys) =0
Wiwy = Y121 + -+ VsZs,

where the P;(x,y;) € Clx, y;] are chosen so that P;(x, fj(x)) =0, j=1,...,s in a
neighbourhood of the origin in C™.
The system has a solution in R given by

yi= fix), z; = hj(x), w1 = p(x), wy = q(x).

Thus, by Artin’s Theorem 3.2, for any positive integer ¢, there exists an algebraic
solution (f1,..., f,, h1,...,hs, P,¢) of (T) such that

F() = £i(x0), hy(x) = hj(x), p(x) = p(x), and  §(x) = q(x) mod(x)".

Note that each of the polynomial equations P;(x, y;) = 0 admits only finitely many
solutions in y;(x) € R. Therefore, by choosing c sufficiently large, one can assume that

fi(x):fj(x) for j=1,...,s, whence
PG = filhi+ -+ fihs €P.

Now, we can choose ¢ so that exp(p) <xi'...xr and exp(q) <x{'...x5 for any

(c1s..osem)€N™ with 377 ¢; = c. Then exp(p) = exp(p) and exp(§) = exp(q) lie
outside the diagram 91(P), and hence p,g € P. Consequently, P is not prime itself.
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Finally, let Q be a primary ideal in C(x), with P=+/0 € Spec C(x). Then by above,
v/OR = PR is prime in R, and thus QR is PR-primary, by [15, 9.C Theorem 13]. This
completes the proof of the lemma. [J

Remark 4.2. Note that the above result is not equivalent to saying that primary factors
in any primary decomposition of the extended ideal /R can be generated by algebraic
functions. In fact, the latter is not true (even under the non-redundancy assumptions),
as was pointed out to the author by Mark Spivakovsky:

Consider, for instance, I = (x?,xy) in C(x,y,z), and let f(z) be a non-algebraic
convergent power series in z. Then

I-C{x,y,z} = () Ny~ f()xx?)

and the second factor cannot be generated by elements of C(x, y,z).

5. Proof of the main result
Our Lemma 4.1 implies immediately the following:

Proposition 5.1. If W is an (isolated or embedded) irreducible component of a Nash
germ (resp. set), then W is a Nash germ (resp. set) itself.

Remark 5.2. The above fact is well-known in case of the isolated components (see
[18, Section 2.B] for a geometric argument). However, to our best knowledge, the
embedded components have not been accounted for so far.

The idea of the proof of Theorem 1.1 is to show that, like in the algebraic case,
in any fibre power of a Nash morphism all the geometric vertical components are al-
gebraic vertical. The difficulty lies in the fact that, despite our assumption that both

X and Y, be reduced, the fibre powers X, é{f,.}} of X over Y, may contain embed-
ded components (see example below) and one needs to control the behaviour of the
induced map fc,{{i‘.}} along these components as well. This is achieved by combining
Propositions 5.1 and 5.4.

Example 5.3 (Hartshorne [9, Chapter III, Exercise 9.3(b)]). For reduced spaces Xi, X3,
and Y, the fibre product X; x X, need not be reduced itself: Let X C C* be a union of
Y

two copies of C? that intersect precisely at the origin, say
Xy = {(ylayZ,t],t2)€C4:t1 =5 =0}

and

Xo={(y,yt1,6)€C 1ty — y1 =1, — y, =0}
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and let f:X — C? be the projection onto the y variables. Then the fibre power

X1} =X x X has an embedded component, namely the origin in C*.
C2

Proposition 5.4. Every Nash mapping f : X — Y of Nash sets is Gabrielov regular.

Proof. The problem being local, it suffices to consider the case when f::X: — Y, is
a Nash morphism of germs of Nash sets. Furthermore, by passing to the graph of f,
can assume that & =(0,1), Xz C (C" x Y)¢, and f; is a germ at ¢ of the canonical
projection m:C” x Y — Y. This makes f: a germ of a polynomial mapping. Next,
observe that X being Nash, there exists a germ of an algebraic set Z: in (C” xY)¢ such
that X C Z; and dim Z: = dim X; (cf. [18, Theorem 2.10]). By Chevalley’s Theorem
[14, Chapter 7, Section 8.3], the image f (2 ) of an arbitrarily small representative Z
of Z at ¢ is algebraic constructible, and hence

dim, £(X) < dim, f(Z) = dim, f(Z) = dim, f(X),

which completes the proof. [J

Proof of Theorem 1.1. Our theorem now follows immediately from Theorem 2.3 and
Propositions 5.1 and 5.4. Indeed, if f: is not flat then there exists a geometric vertical

w

component W in Xé{{'ﬁ. But W is a Nash germ, by Proposition 5.1, and hence f i{{’:};
is Gabrielov regular, by Proposition 5.4. Thus W is algebraic vertical.

Conversely, if f: is flat then so are all its fibre powers ff{{i,.}}, as flatness is preserved
by any base change (see [10, Section 6, Proposition 8]) and composition of flat maps
is flat. Hence, Uy(n sy is a torsion-free (y,-module, and thus by Remark 2.1, X 5{{"[1];
has no algebraic vertical components. [

Remark 5.5. Note that the above argument cannot be extended beyond the Nash cat-
egory. In general, a fibre power of a Gabrielov regular morphism of germs of analytic
spaces need not be regular itself: Let f::X: — Y, be a morphism of germs of analytic
spaces with X: of pure dimension and Y, irreducible of dimension n. Let V' be a locally
irreducible representative of Y, and let U be a pure-dimensional representative of X
such that f(U) C V. Define S = {y€V: dim f~!(y) > I}, where [ is the minimal
fibre dimension of f on U, and suppose that dim, S = n, where S denotes the Zariski
closure of S in V. Then the top fibre power XE{{Zi contains an isolated geometric verti-

cal component W which is not algebraic vertical. In particular, fé{{'f,}} is not Gabrielov
regular (see [2, Proposition 3.1 and Example 3.3]).
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