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Abstract

The generic fibre produc xg N of smooth manifoldsM and N over R is itself a smooth
manifold. It can therefore be characterized by the number of its connected components. We give such
a characterization in the case of compact one-dimensional manifolds in terms of relations among the
critical values of mapg : M — R andg : N — R. A simple efficient algorithm is provided.
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1. Introduction and main result

Let f:X — Z, g:Y — Z be arbitrary maps. By thébre product of X and Y
over Z we mean the seKxzY ={(x,y) € X x Y: f(x) = g(y)}. Theinduced map
fxzg:MxzN — Zis given by(x, y) — f(x).

The fibre product plays an important role in algebraic and analytic geometry, where
it is used for schemes and analytic spaces as well as in the theory of categories. It is
not very popular in topology though, mainly due to the fact that the fibre product of
smooth manifolds over arbitrary maps need not be smooth itself. Nonetheless, we have
an important property that thgeneric fibre product of smooth manifolds remains in the
class, as we recall in Section 2. l.e., for a pairg) € C" (M, R) x C"(N,R) from some
open and dense subset of the space, the fibre pradugt N of C> manifolds is aC”
manifold, 2< r < oco. It can therefore be characterized by the number of its connected
components.
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The main results of the paper—Theorems 3.5 and 3.6 below—give such a characteri-
zation in the case of compact one-dimensional manifolds. (Compactness is a natural con-
dition, since for non-compact manifolds the number of components of their fibre product
is usually infinite.) We show that the number of component&fofg N depends only on
relations among the critical values of mapsM — R andg: N — R, and that every
component is uniquely determined by some collection of the critical points of these maps.

Since bothM and N can be identified withs?, their fibre product is then a finite
collection of disjoint circles smoothly embedded ifftd = St x S1. Therefore, in general
there are two kinds of components #fxg N, nhamely contractible and non-contractible
ones, that require distinct characterizations.

First of all, it may happen that values gfare bounded by values gf i.e., there are
critical pointsyy, y. € C, such thatg(y,) < f(x) < g(y.) for all x € M. Theorem 3.6
asserts that the pairgy, y.) € C; x C, of this type correspond to the non-contractible
components ofM xg N, characterized by the property that the global extrema of the
induced mapf xg g restricted to the component are equal to the global extrema of
on M. Itis worth pointing out that all the non-contractible components belong to the same
homotopy class (unique for a given pdif, g)), either the class of the parallel or of the
meridian (see Remark 3.7).

The contractible components are generated by the pairs of triples of critical points
(X Xm, Xe), (Vb Yms Ye)) € Cf3 x Cg® such thatf has local minima aty, x, and a local
maximum atv,,, g has local maxima at,, y. and a local minimum at,,, and the following
inequalities hold

fxp), fxe) <gm) < fxm) < g(p), 8(e)-

Theorem 3.5 shows the way the contractible components correspond to the pairs
((xpy xm, xe), b, Ym, Ye)) @above. Counting of the components therefore becomes very
straightforward, as it simply reduces to finding all the couples of critical points with the
required properties satisfied by their critical values.

Throughout the paper we assume strong topologies in the spgdcas, R) and
C"(N,R), denoted byC((M,R) andC (N, R) respectively (see, e.g., [1, Section 2.1]).
M andN are always assumed to B& manifolds without boundary.

2. Somefactsfrom differential topology

Let M andN beC* manifolds of dimensiona andn respectively, and lef : M — R,
g:N — R be arbitraryC” functions, 2< r < oo. Denote byC (respectivelyC,) the set of
critical points of f (respectivelyg). Let A = {(a, a): a € R} be the diagonal iiR?.

Observe thatthe mapx g: M x N — R?is transverse ta if and only if £ (x) # g(y),
for any pair of critical pointgx, y) € Cy x C,. We recall the following two well known
results from differential topology (see, e.g., [1, Theorems 1.3.3 and 3.2.1]):

Proposition2.1. Let f: M — P beaC” map,r > 1,and A C P aC” submanifold. If f is
transverseto A, then f~1(A) isa C" submanifold of M. (The codimension of f~1(A) in
M isthe same as the codimensionof A in P.)
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Proposition 2.2. Let M, P be C* manifolds, A C P a closed C* submanifold. Let
1< r < oo. Then the set " (M, P; A) of C" mappings f: M — P which are transverse
to A, isopen and densein Ci(M, P).

From these propositions and the remark above:

Corollary 2.3. The set of pairs (f, g) € C"(M,R) x C"(N, R) such that f(x) # g(y), for
any (x,y) € Cy x Cg,isopenand densein Cy(M, R) x C\(N, R).

For any pair ( f, g) of functions satisfying the above condition, the fibre product M xg N
isaC" submanifold of M x N (of codimension 1).

For the purpose of application in the next section, we slightly shrink our family of pairs
(f, g) of functions in question. Namely, we state the following definition:

Definition 2.4. Let 2 < r < co. We say that a pair of Morse functioqg, g) € C" (M, R) x
C"(N,R) is good, if it satisfies the following conditions:

(i) f(x1) # f(x2), for arbitrary distinct1, x € Cy,
(i) g(y1) # g(y2), for arbitrary distincty, y» € Cg,
(i) f(x)#g(y), foranyx eCyr, y € Cq.

We denote the set of such pairs§yM, N).

Since the Morse functions on a manifald form a dense open subset@i(M, R),
2<r < oo (see, e.g., [1, Theorem 6.1.2]), we see that th&/¢gf, N) is again open and
dense irC{(M,R) x C¢(N, R).

3. Characterization

Let M andN be connected, compact, one-dimensiaifélmanifolds, and leff : M —

R, g: N — R beC" mappings such thatf, g) € G(M, N). Then by the previous section,
their fibre productM xg N is a compact one-dimensionél manifold, so it can be
characterized by the number of its connected components.

We shall show that the number of the component®&ofr N depends only on relations
among the critical values of magsandg, and to determine this number one does not even
need exact knowledge of those values. Recall that fgwaa pair ( f, g) we always have
fx) <g)or f(x)>g(y), foranyx e Cr andy € C,.

Identifying M and N with S1, we obtain thatM xr N is a finite set of disjoint circles
smoothly embedded int62. The components can then be either contractible or not and it
turns out that the two types require distinct characterizations in terms of critical points of
the mapsf andg.

In Theorems 3.5 and 3.6 we show that every component is uniquely assigned to
some collection of critical points of mappingsandg. The rules of constructing these
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collections, described in Definitions 3.3 and 3.4, provide an easy efficient algorithm for
computing the number of the components\bk g N.
LetCr = {x1,...,xm}, Cq = {y1,..., yn} be the sets of critical points of the mays

andg, ordered according to some orientationsrand N. Denote byxr{1in (respectively
x,{qax) the point at whichf admits its global minimum (respectively maximum), and by
yﬁ'ﬂn, ymax the analogous points far. Observe that the induced maixg g: M xgN —

R, (x,y) — f(x), admits a local minimum (respectively maximum) at a p@igt yo) if
and only if eitherf has a local minimum (respectively maximum)xgator ¢ has a local
minimum (respectively maximum) ap. Moreover, the only critical points of xg g are
these at whichf xg g admits local extrema, since this is the case faandg. Denote by
C(f xr g) the set of critical points of xp g.

Let{Sy}.c be the family of the connected components of the maniféldg N . (Obvi-
ously, A is a finite set, so in particular the component3bkr N are open.) For a compo-
nentS, let (o 1> Ymina): -+ -+ Cininr» Vinin) (FeSPECtively(xr 1. Yimax1): - - -» Knaxs»
y(}ms)) be the points at whiclf xg g[S, admits its global minimum (respectively maxi-
mum). Notice that ifx}. . € Cy, for somei < r, then the global minimum of xg g|Sx

min, i
equalsf (x}y, ) andx}t, = =xk._ =:x}. since the critical values of are pair-

min,r min’
wise distinct. Ifx/;,; & Cr, thenyl, . € C,, whence the global minimum of x g[S,
equalsg (Ynin ;) @Nd yiin 1 =+ = Yin, = Ymin for the same reason. Similarly for the
global maximum off xg g|.S;.

Given a componers; , two cases are possible:

(@) (xéwin’ xr)ﬁax €Cy) or (yr)ﬁin’ yr)ﬁax €Cy) orelse
(b) (xéwin €Cr andygwax €Cg) or (xr)ﬁax eCy andyéqm €Cy).

In the first case we say that the global extremafofg g|S, come from the same map,
and in the second one that the global extremaf efz g|S, come from different maps.
Denote byS(M xg N)" the set of the components of the first kind, andSigyZ xg N)€ the
components of the second kind.

For a componens,, let M) = p1(S,) andN, = p2(S,), wherep1: M x N — M and
p2:M x N — N are the canonical projections. Th&f, (respectivelyN,) is a connected,
compact subset Q¥ (respectivelyN).

Forx',x” e M, x’ # x”, let (x’,x”)+ be an arc connecting’ and x” according to
the orientation, andx’, x”)_ an arc joiningx’ with x” opposite to the orientation oM.
Similarly we define(y’, y”)+ and(y’, y")_ for y’, y" e N, y' £ y".

Remark 3.1. The elements of (M xgN)¢ are precisely the contractible components of
M xgr N, as each of them is contained in some rectabglex. )+ x (yp, ve)+ (cf. the proof

of Theorem 3.5 below)S(M xg N)" consists of the homotopically nontrivial components
of MxgN. Indeed, for anys, € S(M xgrN)", eitherp1(S,) = M or p2(S,) = N (see the
proof of Theorem 3.6).

Lemma 3.2. Let the points xp, x. € M, yp, yo € N be such that f(xp) = g(yp), f(xe) =
ge), flxp) < f(x) < flxe) for x € (xp, xe)+, and g(yp) < g(y) < g(ye) for y €
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(¥b, ye)+. Then there exists a path ¢ : [0, 1] — M xr N connecting (xp, y») and (x., y.)
such that pa(¢([0, 1])) = (xp, x¢)+ and p2(¢([0, 11)) = (ys, ye)+-

Proof. Consider the rectangl® = (xp, xe)+ X (yp, ye)+. Let S, be the component of
M xg N passing througlix,, y»). By assumptionf (x) > f(xp) for x €int (xp, x.)+, and
g(y) > g(yp) for y €int (yp, y.)+, which implies thatS, enters inside of at the point
(xp, y»). Being a simple closed curvs, has to leaveP at another pointxg, yo) € 3 P. By
definition of the fibre productf (xo) = g(yo). By our assumptions oy andg, there are
only two points ord P satisfying the last condition, namely;, y,) and(x., y.). Therefore
(x0, yo) = (x¢, ye) @ndg is just a parametrization of the part 8f lying between(x, yp)
and(xe, ye).

We now define some concepts necessary for further considerations. Fix arkjteary
xm # x. elements of ¢, andy;, # y, # y. elements of, such thatf has alocal maximum
at x,,, and local minima at, x., andg has a local minimum ayg,, and local maxima
at yp, y., or to the contrary;f has a local minimum at,, and local maxima aty, x,,
and g has a local maximum at,, and local minima aty,, y.. Moreover assume that

Xm € (Xp, Xe)+ @NAyy € (Vp, Ye)+-

Definition 3.3. The pair of triples of point$(xy, X, xe), (b, Ym, Ye)) Satisfying the above
conditions is callededuced, if:
D fxp), f(xe) <glym) < fxm) < g(yb), g(ye)s
gm) < f(x) < fxp), forx e Cr N (int(xp, xe) 4 \ {xm})
gm) <g(y) < f(xm), fory € Ce N (INt(yp, ye)+ \ {ym})
in the case wherf has a local maximum at,,, or else
(@) f(xp), f(xe) > gym) > fxm) > g(yb), g(ye)s
gm) > f(x) > f(xm), forx € Cr N (int(xp, xe)4 \ {xm})
gm) > g(y) > f(xm), fory € Co N (INt{yp, ye)+ \ {ym})
in the opposite case

Now suppose that values of the m@mare bounded by values gf i.e., that there exist
y',¥"” € N such that for any € M we haveg(y") < f(x) < g(y").

Definition 3.4. We will say that the paityy, y.) € C, x C, covers M, if:

(@) (8(yp) < f(x) < g(ye), foranyx € M) or (g(ye) < f(x) < g(yp), foranyx e M),
(b) there exisk’, x” € M such thatf (x") < g(y) < f(x”) foranyy € C, Nint(yp, ye)+.

Similarly we define a paitx;, x.) which covers N, in the case when values gfare
bounded by values of . Of course these two cases exclude each other.

In the example presented on Fig. 1 there are two gawering N, hamely(xs, x2) and
(x2, x5), and oneeduced pair: ((x2, x3, xa), (3, y4, ¥1)).
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Fig. 1.

Theorem 3.5. There is a bijection between the set of reduced pairs ((xp, Xm, Xe)s Vb> Yim»
ve)) and the set S(M xr N)© of contractible components of the fibre product M xg N .

Proof. Let S, be a contractible component &f xg N. Without loss of generality can
assume thatejy., € Cy and yi. € C,, i.e., that the global minimum off xg g|S;
comes from g and its global maximuneomes from f. Then the mapf xg g|S, admits

its minimal value at pointgxl,, 1, v, ..., ¢k yeo), and the maximal value at
A A A A
(*max ymaxl)’ ooy (Cmaxe ymaxs)'

Consider the projectioi, = p1(S;). Observe thadl,, = (x}, x}), for somex}, x5 €
M, because otherwistf, = M, hencexr{;in,xr{qax € M,, which implies that both global
extrema of f xg g|S, come from f, contrary to our assumption. For the same reason
N;. = (y}, y5)+ is a proper subset af .

Notice next that if(xo, yo) € C(fxr g) N Sy andxg € Cy, thenyg ¢ C, i€, g iS @
homeomorphism neap. It follows that nearg, the mapping: — (x, g~ 1(f (x))) is also
a homeomorphism, hence in particulgre int M. Similarly, if (xg, yo) € C(f xr g) N Sy
andyg € Cg, thenyo € int N,

Consider a pointx/, ;» ymin)» 1 <i <r. By the above observation;, € intN,
andg(y) > g(yp,) neary.. . Hence(f xgr g)(x, y) > (fog)(x%qin’i, yhi) in a small
neighbourhood/ of (xpi;» ¥in) in S, and thereforef (x) > f(x7y, ;) for x € p1(U).
But f is a homeomorphism neaf;. ;, asx,; & Cr, SOx/yi; € dM,. Thereforer =2
andxéqm,l = x%, )céqin,2 = x%. Similarly,s =2 andyr)ﬁaxl = yi‘, yrknaxz = yﬁ‘.

Let nowx}, x} € Cy \ M, be the critical points closest tg} andx} respectively, and
lety}, v € C, \ Ny, be closest to} andy? respectively. As follows immediately from the

construction abovef admits local minima at}}, x/, ¢ admits local maxima at}, y2, and
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the pair((x}, xpap x2), (v, yhio, v2)) isreduced. Clearly, the pair is uniquely determined
by Si.

Next we show that everyeduced pair ((xp, xm, xe), (Yo, Ym, Ye)) g€nerates some
contractible componers, . Fix such a pair and assume without loss of generality that
f has a local maximum at,,, ¢ has a local minimum at,,,, x, € (xp, x¢)+, andy,, €
(Y, Ye)+. L€t Xmin1 € (Xp, Xm)+ aNdxmin2 € (xm, x.)+ be the unique points satisfying
[ (xmin1) = f(xmin,2) = g(ym). Similarly, et ymax1 € (yp, ym)+ and ymax2 € (ym, Ye)+
be such thalf (x,) = g(ymax1) = g(ymax2) (see Fig. 2).

Now Lemma 3.2 implies that there exist paths Mixg N connecting(xmin,1, Ym)
with (X, ymax1)s (¥m, Ymax1) With (xmin,2, Yim), (Xmin,2, Ym) With (xn, ymax2), and
(Xm» Ymax2) With (xmin1, ym). In other words, all the four points lie on the same
componentSy. As Sy C (¥min.1, Xmin,2) + X (¥Ymax1, Ymax2)+, the minimal and maximal
values of f xR g|S, come fromy,, andx,, respectively, and henc§, is a contractible
component generated by our pait

Suppose now that values gfare bounded by values gf i.e., that there exist’, y” € N
such thaig (y') < f(x) < g(y”) forall x € M, or to the contrary: values gf bound values
of g. Then there exist non-contractible components of the fibre praducg N and we
have the following

Theorem 3.6. Every non-contractible component S, for which global extrema of
fxrglS, comefrom f (respectively g) is generated by the unique pair (y;}, y») which
covers M (respectively pair (x};, x)) covering N).
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Proof. Let S, € S(MxgrN)" be a non-contractible component and assume that the global
extrema of f xg g|S, come from f. We shall show thads, = p1(S,) = M. Let xéqin be

any point at whichf | M, admits its global minimumagr’}m any point at whichf | M, admits

its global maximum. Note thaV, is a proper subset a¥ (as it does not contain the
pointsys .. yiax), and henc@ N, = {y}, y3}, for somey?, y5 € N. Lety}. € N, be any
point such thatf xg g|S;. has global minimum atx}. . y*. ). Sincex}, € Cy, then, as

in the proof of Theorem 3.5, we hayé.,.. € N,. Similarly, if y., € Ny is such that
xR glSy has global maximum atx} .. e, thenyl.. € dN,. Therefore (up to the
order)y*. = y} andy},,= y} are unique.

Now suppose thaM,, # M, i.e., M, = (x},x}),, for somex}, x5 € M, and choose
y',y" € N so that(x},y"), (x5, ") € Si. Then S, is contained in the rectanglg =
(x3,%5) 4 X (Yhins Yiax+ and passes through the (pairwise distinct) poiats, y'),
(i Vi) (X5, 97, (teax Yiaa) lying on the four edges of. As S; is a simple closed
curve, there exists a pointe (y, Yimad+, distinct fromy?. and such thatx},. ., ) €
S:., which contradicts the uniquenessygf;,. ThusM;, = M, hence in particulax
xr{qin andx} = Xihax.

Finally, lety} € C, \ N, be the critical point next tg:, and lety} € C, \ N, be next
to Yo The pair(y;},y{}) is uniquely determined by, and satisfies the conditions of
Definition 3.4.

Consider now any paitys, y.) covering M. By Definition 3.4 we can assume thghas
a local minimum aty, and a local maximum at., and that there exists exactly one point
y' € (yp, ye)+ for which g(y") = f(xr{:in) and exactly one point” € (yp, y.)+ for which
gy = f(xr{,ax). By a similar argument as in the second part of the proof of Theorem 3.5,
one obtains a loop iM xg N containing(xr{]in, y’) and (xr{qax, y"), being in fact some
component; € S(M xgrN)" generated by the paiys, y.). O

A
min —

Remark 3.7. All the non-contractible components o xg N C T2 belong to the same
homotopy class (unique for a given pair of mapgsg)). It is either the class of the parallel
or of the meridian.

Indeed, if S, is a component such that global extremafotr g|S, come from f,
then M, = M and N, = (y}, y})+, for some (distinct)y}, y € N (see the proof of
Theorem 3.6). Hence the homotopy classSgfis the same as that & x {1} c T2.
Similarly, if global extrema off xg g[S come fromg, M, = (x}, x5) (with x} # x})
andN; = N, i.e., S, is homotopy equivalent tel} x 1 c 72.

Remark 3.8. In order to completely classify the fibre produdtsxr St as submanifolds
of T2, one also needs to know whether some of the contractible components lie inside the
others. These inclusions can be trivially checked given alkédaced pairs of triples of
critical points. For, if a componerst, is generated by(x}, x, x2), (v}, v, y2)) and S,
is generated by(x;, x,,, x;), (¥5, Y- Ye)), thens$; lies insideS; if and only if x; < xlf,

A

xX;<xl,yp < y;}, andy{} < y; with respect to the cyclic orderings of critical points fh

andN (or equivalentlyM, c M, andN, C N;).
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