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Abstract

The generic fibre productM×RN of smooth manifoldsM and N over R is itself a smooth
manifold. It can therefore be characterized by the number of its connected components. We give such
a characterization in the case of compact one-dimensional manifolds in terms of relations among the
critical values of mapsf : M → R andg : N → R. A simple efficient algorithm is provided.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and main result

Let f :X → Z, g :Y → Z be arbitrary maps. By thefibre product of X and Y

over Z we mean the setX×ZY = {(x, y) ∈ X × Y : f (x) = g(y)}. The induced map
f×Zg :M×ZN → Z is given by(x, y) �→ f (x).

The fibre product plays an important role in algebraic and analytic geometry, where
it is used for schemes and analytic spaces as well as in the theory of categories. It is
not very popular in topology though, mainly due to the fact that the fibre product of
smooth manifolds over arbitrary maps need not be smooth itself. Nonetheless, we have
an important property that thegeneric fibre product of smooth manifolds remains in the
class, as we recall in Section 2. I.e., for a pair(f, g) ∈ Cr (M,R) × Cr (N,R) from some
open and dense subset of the space, the fibre productM×RN of C∞ manifolds is aCr

manifold, 2� r � ∞. It can therefore be characterized by the number of its connected
components.
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The main results of the paper—Theorems 3.5 and 3.6 below—give such a characteri-
zation in the case of compact one-dimensional manifolds. (Compactness is a natural con-
dition, since for non-compact manifolds the number of components of their fibre product
is usually infinite.) We show that the number of components ofM×RN depends only on
relations among the critical values of mapsf :M → R andg :N → R, and that every
component is uniquely determined by some collection of the critical points of these maps.

Since bothM and N can be identified withS1, their fibre product is then a finite
collection of disjoint circles smoothly embedded intoT 2 = S1 × S1. Therefore, in general
there are two kinds of components ofM×RN , namely contractible and non-contractible
ones, that require distinct characterizations.

First of all, it may happen that values off are bounded by values ofg, i.e., there are
critical pointsyb, ye ∈ Cg such thatg(yb) < f (x) < g(ye) for all x ∈ M. Theorem 3.6
asserts that the pairs(yb, ye) ∈ Cg × Cg of this type correspond to the non-contractible
components ofM×RN , characterized by the property that the global extrema of the
induced mapf×R g restricted to the component are equal to the global extrema off

onM. It is worth pointing out that all the non-contractible components belong to the same
homotopy class (unique for a given pair(f, g)), either the class of the parallel or of the
meridian (see Remark 3.7).

The contractible components are generated by the pairs of triples of critical points
((xb, xm, xe), (yb, ym, ye)) ∈ Cf 3 × Cg3 such thatf has local minima atxb, xe and a local
maximum atxm, g has local maxima atyb, ye and a local minimum atym, and the following
inequalities hold

f (xb), f (xe) < g(ym) < f (xm) < g(yb), g(ye).

Theorem 3.5 shows the way the contractible components correspond to the pairs
((xb, xm, xe), (yb, ym, ye)) above. Counting of the components therefore becomes very
straightforward, as it simply reduces to finding all the couples of critical points with the
required properties satisfied by their critical values.

Throughout the paper we assume strong topologies in the spacesCr (M,R) and
Cr (N,R), denoted byCr

S(M,R) andCr
S(N,R) respectively (see, e.g., [1, Section 2.1]).

M andN are always assumed to beC∞ manifolds without boundary.

2. Some facts from differential topology

LetM andN beC∞ manifolds of dimensionsm andn respectively, and letf :M → R,
g :N → R be arbitraryCr functions, 2� r � ∞. Denote byCf (respectivelyCg) the set of
critical points off (respectivelyg). Let∆ = {(a, a): a ∈ R} be the diagonal inR2.

Observe that the mapf ×g :M×N → R
2 is transverse to∆ if and only iff (x) 
= g(y),

for any pair of critical points(x, y) ∈ Cf × Cg . We recall the following two well known
results from differential topology (see, e.g., [1, Theorems 1.3.3 and 3.2.1]):

Proposition 2.1. Let f :M → P be a Cr map, r � 1, and A ⊂ P a Cr submanifold. If f is
transverse to A, then f−1(A) is a Cr submanifold of M . (The codimension of f −1(A) in
M is the same as the codimension of A in P .)
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Proposition 2.2. Let M , P be C∞ manifolds, A ⊂ P a closed C∞ submanifold. Let
1 � r � ∞. Then the set �r (M,P ;A) of Cr mappings f :M → P which are transverse
to A, is open and dense in Cr

S(M,P ).

From these propositions and the remark above:

Corollary 2.3. The set of pairs (f, g) ∈ Cr (M,R) × Cr (N,R) such that f (x) 
= g(y), for
any (x, y) ∈ Cf × Cg , is open and dense in Cr

S(M,R)× Cr
S(N,R).

For any pair (f, g) of functions satisfying the above condition, the fibre product M×RN

is a Cr submanifold of M × N (of codimension 1).

For the purpose of application in the next section, we slightly shrink our family of pairs
(f, g) of functions in question. Namely, we state the following definition:

Definition 2.4. Let 2� r � ∞. We say that a pair of Morse functions(f, g) ∈ Cr (M,R)×
Cr (N,R) is good, if it satisfies the following conditions:

(i) f (x1) 
= f (x2), for arbitrary distinctx1, x2 ∈ Cf ,
(ii) g(y1) 
= g(y2), for arbitrary distincty1, y2 ∈ Cg ,
(iii) f (x) 
= g(y), for anyx ∈ Cf , y ∈ Cg .

We denote the set of such pairs byG(M,N).

Since the Morse functions on a manifoldM form a dense open subset inCr
S(M,R),

2 � r � ∞ (see, e.g., [1, Theorem 6.1.2]), we see that the setG(M,N) is again open and
dense inCr

S(M,R)× Cr
S(N,R).

3. Characterization

Let M andN be connected, compact, one-dimensionalC∞ manifolds, and letf :M →
R, g :N → R beCr mappings such that(f, g) ∈ G(M,N). Then by the previous section,
their fibre productM×RN is a compact one-dimensionalCr manifold, so it can be
characterized by the number of its connected components.

We shall show that the number of the components ofM×RN depends only on relations
among the critical values of mapsf andg, and to determine this number one does not even
need exact knowledge of those values. Recall that for agood pair (f, g) we always have
f (x) < g(y) or f (x) > g(y), for anyx ∈ Cf andy ∈ Cg .

IdentifyingM andN with S1, we obtain thatM×RN is a finite set of disjoint circles
smoothly embedded intoT 2. The components can then be either contractible or not and it
turns out that the two types require distinct characterizations in terms of critical points of
the mapsf andg.

In Theorems 3.5 and 3.6 we show that every component is uniquely assigned to
some collection of critical points of mappingsf andg. The rules of constructing these
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collections, described in Definitions 3.3 and 3.4, provide an easy efficient algorithm for
computing the number of the components ofM×RN .

Let Cf = {x1, . . . , xm}, Cg = {y1, . . . , yn} be the sets of critical points of the mapsf

andg, ordered according to some orientations onM andN . Denote byxf

min (respectively

x
f
max) the point at whichf admits its global minimum (respectively maximum), and by

y
g

min, yg
max, the analogous points forg. Observe that the induced mapf×R g :M×RN →

R, (x, y) �→ f (x), admits a local minimum (respectively maximum) at a point(x0, y0) if
and only if eitherf has a local minimum (respectively maximum) atx0 or g has a local
minimum (respectively maximum) aty0. Moreover, the only critical points off×R g are
these at whichf×R g admits local extrema, since this is the case forf andg. Denote by
C(f×R g) the set of critical points off×R g.

Let {Sλ}λ∈Λ be the family of the connected components of the manifoldM×RN . (Obvi-
ously,Λ is a finite set, so in particular the components ofM×RN are open.) For a compo-
nentSλ let (xλ

min,1, y
λ
min,1), . . . , (x

λ
min,r , y

λ
min,r ) (respectively(xλ

max,1, y
λ
max,1), . . . , (x

λ
max,s,

yλ
max,s)) be the points at whichf×R g|Sλ admits its global minimum (respectively maxi-

mum). Notice that ifxλ
min,i ∈ Cf , for somei � r, then the global minimum off×R g|Sλ

equalsf (xλ
min,i ) andxλ

min,1 = · · · = xλ
min,r =: xλ

min, since the critical values off are pair-

wise distinct. Ifxλ
min,i /∈ Cf , thenyλ

min,i ∈ Cg , whence the global minimum off×R g|Sλ
equalsg(yλ

min,i ) andyλ
min,1 = · · · = yλ

min,r =: yλ
min for the same reason. Similarly for the

global maximum off×R g|Sλ.
Given a componentSλ, two cases are possible:

(a) (xλ
min, x

λ
max∈ Cf ) or (yλ

min, y
λ
max∈ Cg) or else

(b) (xλ
min ∈ Cf andyλ

max∈ Cg) or (xλ
max∈ Cf andyλ

min ∈ Cg).

In the first case we say that the global extrema off×R g|Sλ come from the same map,
and in the second one that the global extrema off×R g|Sλ come from different maps.
Denote byS(M×RN)n the set of the components of the first kind, and byS(M×RN)c the
components of the second kind.

For a componentSλ, let Mλ = p1(Sλ) andNλ = p2(Sλ), wherep1 :M × N → M and
p2 :M ×N → N are the canonical projections. ThenMλ (respectivelyNλ) is a connected,
compact subset ofM (respectivelyN ).

For x ′, x ′′ ∈ M, x ′ 
= x ′′, let 〈x ′, x ′′〉+ be an arc connectingx ′ and x ′′ according to
the orientation, and〈x ′, x ′′〉− an arc joiningx ′ with x ′′ opposite to the orientation onM.
Similarly we define〈y ′, y ′′〉+ and〈y ′, y ′′〉− for y ′, y ′′ ∈ N, y ′ 
= y ′′.

Remark 3.1. The elements ofS(M×RN)c are precisely the contractible components of
M×RN , as each of them is contained in some rectangle〈xb, xe〉+ ×〈yb, ye〉+ (cf. the proof
of Theorem 3.5 below).S(M×RN)n consists of the homotopically nontrivial components
of M×RN . Indeed, for anySλ ∈ S(M×RN)n, eitherp1(Sλ) = M or p2(Sλ) = N (see the
proof of Theorem 3.6).

Lemma 3.2. Let the points xb, xe ∈ M , yb, ye ∈ N be such that f (xb) = g(yb), f (xe) =
g(ye), f (xb) < f (x) < f (xe) for x ∈ 〈xb, xe〉+, and g(yb) < g(y) < g(ye) for y ∈
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〈yb, ye〉+. Then there exists a path ϕ : [0,1] → M×RN connecting (xb, yb) and (xe, ye)

such that p1(ϕ([0,1]))= 〈xb, xe〉+ and p2(ϕ([0,1]))= 〈yb, ye〉+.

Proof. Consider the rectangleP = 〈xb, xe〉+ × 〈yb, ye〉+. Let Sλ be the component of
M×RN passing through(xb, yb). By assumption,f (x) > f (xb) for x ∈ int 〈xb, xe〉+, and
g(y) > g(yb) for y ∈ int 〈yb, ye〉+, which implies thatSλ enters inside ofP at the point
(xb, yb). Being a simple closed curve,Sλ has to leaveP at another point(x0, y0) ∈ ∂P . By
definition of the fibre product,f (x0) = g(y0). By our assumptions onf andg, there are
only two points on∂P satisfying the last condition, namely(xb, yb) and(xe, ye). Therefore
(x0, y0) = (xe, ye) andϕ is just a parametrization of the part ofSλ lying between(xb, yb)
and(xe, ye).

We now define some concepts necessary for further considerations. Fix arbitraryxb 
=
xm 
= xe elements ofCf , andyb 
= ym 
= ye elements ofCg such thatf has a local maximum
at xm and local minima atxb, xe, andg has a local minimum atym and local maxima
at yb, ye, or to the contrary:f has a local minimum atxm and local maxima atxb, xe,
and g has a local maximum atym and local minima atyb, ye. Moreover assume that
xm ∈ 〈xb, xe〉+ andym ∈ 〈yb, ye〉+.

Definition 3.3. The pair of triples of points((xb, xm, xe), (yb, ym, ye)) satisfying the above
conditions is calledreduced, if:

(1) f (xb), f (xe) < g(ym) < f (xm) < g(yb), g(ye),

g(ym) < f (x) < f (xm), for x ∈ Cf ∩ (int〈xb, xe〉+ \ {xm})
g(ym) < g(y) < f (xm), for y ∈ Cg ∩ (int〈yb, ye〉+ \ {ym})
in the case whenf has a local maximum atxm, or else

(2) f (xb), f (xe) > g(ym) > f (xm) > g(yb), g(ye),

g(ym) > f (x) > f (xm), for x ∈ Cf ∩ (int〈xb, xe〉+ \ {xm})
g(ym) > g(y) > f (xm), for y ∈ Cg ∩ (int〈yb, ye〉+ \ {ym})
in the opposite case.

Now suppose that values of the mapf are bounded by values ofg, i.e., that there exist
y ′, y ′′ ∈ N such that for anyx ∈ M we haveg(y ′) < f (x) < g(y ′′).

Definition 3.4. We will say that the pair(yb, ye) ∈ Cg × Cg covers M, if:

(a) (g(yb) < f (x) < g(ye), for anyx ∈ M) or (g(ye) < f (x) < g(yb), for anyx ∈ M),
(b) there existx ′, x ′′ ∈ M such thatf (x ′) < g(y) < f (x ′′) for anyy ∈ Cg ∩ int〈yb, ye〉+.

Similarly we define a pair(xb, xe) which covers N , in the case when values ofg are
bounded by values off . Of course these two cases exclude each other.

In the example presented on Fig. 1 there are two pairscovering N , namely(x5, x2) and
(x2, x5), and onereduced pair: ((x2, x3, x4), (y3, y4, y1)).
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Fig. 1.

Theorem 3.5. There is a bijection between the set of reduced pairs ((xb, xm, xe), (yb, ym,

ye)) and the set S(M×RN)c of contractible components of the fibre product M×RN .

Proof. Let Sλ be a contractible component ofM×RN . Without loss of generality can
assume thatxλ

max ∈ Cf and yλ
min ∈ Cg , i.e., that the global minimum off×R g|Sλ

comes from g and its global maximumcomes from f . Then the mapf×R g|Sλ admits
its minimal value at points(xλ

min,1, y
λ
min), . . . , (x

λ
min,r , y

λ
min), and the maximal value at

(xλ
max, y

λ
max,1), . . . , (x

λ
max, y

λ
max,s ).

Consider the projectionMλ = p1(Sλ). Observe thatMλ = 〈xλ
1 , x

λ
2〉+, for somexλ

1, x
λ
2 ∈

M, because otherwiseMλ = M, hencexf
min, x

f
max ∈ Mλ, which implies that both global

extrema off×R g|Sλ come from f , contrary to our assumption. For the same reason
Nλ = 〈yλ

1 , y
λ
2〉+ is a proper subset ofN .

Notice next that if(x0, y0) ∈ C(f×R g) ∩ Sλ and x0 ∈ Cf , theny0 /∈ Cg , i.e., g is a
homeomorphism neary0. It follows that nearx0, the mappingx �→ (x, g−1(f (x))) is also
a homeomorphism, hence in particularx0 ∈ intMλ. Similarly, if (x0, y0) ∈ C(f×R g)∩ Sλ
andy0 ∈ Cg , theny0 ∈ intNλ.

Consider a point(xλ
min,i , y

λ
min), 1 � i � r. By the above observation,yλ

min ∈ intNλ,

andg(y) > g(yλ
min) nearyλ

min. Hence(f×R g)(x, y) > (f×R g)(xλ
min,i , y

λ
min) in a small

neighbourhoodU of (xλ
min,i , y

λ
min) in Sλ, and thereforef (x) > f (xλ

min,i) for x ∈ p1(U).

But f is a homeomorphism nearxλ
min,i , asxλ

min,i /∈ Cf , soxλ
min,i ∈ ∂Mλ. Therefore,r = 2

andxλ
min,1 = xλ

1 , xλ
min,2 = xλ

2 . Similarly, s = 2 andyλ
max,1 = yλ

1 , yλ
max,2 = yλ

2 .

Let nowxλ
b , x

λ
e ∈ Cf \ Mλ be the critical points closest toxλ

1 andxλ
2 respectively, and

let yλ
b , y

λ
e ∈ Cg \Nλ be closest toyλ

1 andyλ
2 respectively. As follows immediately from the

construction above,f admits local minima atxλ
b , x

λ
e , g admits local maxima atyλ

b , y
λ
e , and
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Fig. 2.

the pair((xλ
b , x

λ
max, x

λ
e ), (y

λ
b , y

λ
min, y

λ
e )) is reduced. Clearly, the pair is uniquely determined

by Sλ.
Next we show that everyreduced pair ((xb, xm, xe), (yb, ym, ye)) generates some

contractible componentSλ. Fix such a pair and assume without loss of generality that
f has a local maximum atxm, g has a local minimum atym, xm ∈ 〈xb, xe〉+, andym ∈
〈yb, ye〉+. Let xmin,1 ∈ 〈xb, xm〉+ andxmin,2 ∈ 〈xm,xe〉+ be the unique points satisfying
f (xmin,1) = f (xmin,2) = g(ym). Similarly, let ymax,1 ∈ 〈yb, ym〉+ andymax,2 ∈ 〈ym,ye〉+
be such thatf (xm) = g(ymax,1) = g(ymax,2) (see Fig. 2).

Now Lemma 3.2 implies that there exist paths inM×RN connecting(xmin,1, ym)

with (xm, ymax,1), (xm, ymax,1) with (xmin,2, ym), (xmin,2, ym) with (xm, ymax,2), and
(xm, ymax,2) with (xmin,1, ym). In other words, all the four points lie on the same
componentSλ. As Sλ ⊂ 〈xmin,1, xmin,2〉 + × 〈ymax,1, ymax,2〉+, the minimal and maximal
values off×R g|Sλ come fromym andxm respectively, and henceSλ is a contractible
component generated by our pair.✷

Suppose now that values off are bounded by values ofg, i.e., that there existy ′, y ′′ ∈ N

such thatg(y ′) < f (x) < g(y ′′) for all x ∈ M, or to the contrary: values off bound values
of g. Then there exist non-contractible components of the fibre productM×RN and we
have the following

Theorem 3.6. Every non-contractible component Sλ, for which global extrema of
f×R g|Sλ come from f (respectively g) is generated by the unique pair (yλ

b , y
λ
e ) which

covers M (respectively pair (xλ
b , x

λ
e ) covering N ).
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Proof. Let Sλ ∈ S(M×RN)n be a non-contractible component and assume that the global
extrema off×R g|Sλ come from f . We shall show thatMλ = p1(Sλ) = M. Let xλ

min be
any point at whichf |Mλ admits its global minimum,xλ

max any point at whichf |Mλ admits
its global maximum. Note thatNλ is a proper subset ofN (as it does not contain the
pointsyg

min, y
g
max), and hence∂Nλ = {yλ

1, y
λ
2}, for someyλ

1, y
λ
2 ∈ N . Let yλ

min ∈ Nλ be any
point such thatf×R g|Sλ has global minimum at(xλ

min, y
λ
min). Sincexλ

min ∈ Cf , then, as
in the proof of Theorem 3.5, we haveyλ

min ∈ ∂Nλ. Similarly, if yλ
max ∈ Nλ is such that

f×R g|Sλ has global maximum at(xλ
max, y

λ
max), thenyλ

max ∈ ∂Nλ. Therefore (up to the
order)yλ

min = yλ
1 andyλ

max= yλ
2 are unique.

Now suppose thatMλ 
= M, i.e., Mλ = 〈xλ
1 , x

λ
2〉+, for somexλ

1, x
λ
2 ∈ M, and choose

y ′, y ′′ ∈ N so that(xλ
1, y

′), (xλ
2, y

′′) ∈ Sλ. Then Sλ is contained in the rectangleP =
〈xλ

1 , x
λ
2〉+ × 〈yλ

min, y
λ
max〉+ and passes through the (pairwise distinct) points(xλ

1, y
′),

(xλ
min, y

λ
min), (x

λ
2, y

′′), (xλ
max, y

λ
max) lying on the four edges ofP . As Sλ is a simple closed

curve, there exists a pointy ∈ 〈yλ
min, y

λ
max〉+, distinct fromyλ

min and such that(xλ
min, y) ∈

Sλ, which contradicts the uniqueness ofyλ
min. ThusMλ = M, hence in particularxλ

min =
x
f

min andxλ
max= x

f
max.

Finally, letyλ
b ∈ Cg \ Nλ be the critical point next toyλ

min and letyλ
e ∈ Cg \ Nλ be next

to yλ
max. The pair(yλ

b , y
λ
e ) is uniquely determined bySλ and satisfies the conditions of

Definition 3.4.
Consider now any pair(yb, ye) covering M. By Definition 3.4 we can assume thatg has

a local minimum atyb and a local maximum atye, and that there exists exactly one point
y ′ ∈ 〈yb, ye〉+ for which g(y ′) = f (x

f
min) and exactly one pointy ′′ ∈ 〈yb, ye〉+ for which

g(y ′′) = f (x
f
max). By a similar argument as in the second part of the proof of Theorem 3.5,

one obtains a loop inM×RN containing(xf

min, y
′) and (x

f
max, y

′′), being in fact some
componentSλ ∈ S(M×RN)n generated by the pair(yb, ye). ✷
Remark 3.7. All the non-contractible components ofM×RN ⊂ T 2 belong to the same
homotopy class (unique for a given pair of maps(f, g)). It is either the class of the parallel
or of the meridian.

Indeed, ifSλ is a component such that global extrema off×R g|Sλ come fromf ,
then Mλ = M and Nλ = 〈yλ

1, y
λ
2〉+, for some (distinct)yλ

1, y
λ
2 ∈ N (see the proof of

Theorem 3.6). Hence the homotopy class ofSλ is the same as that ofS1 × {1} ⊂ T 2.
Similarly, if global extrema off×R g|Sλ come fromg, Mλ = 〈xλ

1, x
λ
2〉+ (with xλ

1 
= xλ
2)

andNλ = N , i.e.,Sλ is homotopy equivalent to{1} × S1 ⊂ T 2.

Remark 3.8. In order to completely classify the fibre productsS1×RS
1 as submanifolds

of T 2, one also needs to know whether some of the contractible components lie inside the
others. These inclusions can be trivially checked given all thereduced pairs of triples of
critical points. For, if a componentSλ is generated by((xλ

b , x
λ
m, x

λ
e ), (y

λ
b , y

λ
m, y

λ
e )) andSτ

is generated by((xτ
b , x

τ
m, x

τ
e ), (y

τ
b , y

τ
m, y

τ
e )), thenSλ lies insideSτ if and only if xτ

b < xλ
b ,

xλ
e < xτ

e , yτ
b < yλ

b , andyλ
e < yτ

e with respect to the cyclic orderings of critical points onM

andN (or equivalently,Mλ ⊂ Mτ andNλ ⊂ Nτ ).
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