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Abstract

Let fξ :Xξ → Yη be a morphism of germs of complex analytic spaces, whereXξ is reduced
of pure dimension andYη is smooth of dimensionn. We give several sufficient conditions for th
following characterization of flatness to hold:fξ is flat if and only if thenth analytic tensor powe
OX,ξ ⊗̂OY,η

· · · ⊗̂OY,η
OX,ξ︸ ︷︷ ︸

n times

is a torsion-freeOY,η-module.

 2005 Elsevier Inc. All rights reserved.

Keywords:Flatness; Torsion freeness; Vertical components; Gabrielov regularity

1. Introduction and main result

Given a holomorphic mappingf :X → Y of complex analytic spaces, withf (ξ) = η,
let fξ :Xξ → Yη denote the germ off at ξ , and letf {i}

ξ {i} :X{i}
ξ {i} → Yη be the germ atξ {i} =

(ξ, . . . , ξ) ∈ Xi of the induced canonical map from thei-fold fibre power ofX overY . The
main result of this paper is the following criterion for flatness of analytic morphisms:
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Theorem 1.1. Let fξ :Xξ → Yη be a morphism of germs of analytic spaces, whereXξ

is reduced of pure dimension andYη is smooth of dimensionn. Suppose that one of th
following conditions is satisfied:

(1) n < 3;
(2) fξ :Xξ → Yη is a Nash morphism of Nash germs;
(3) the singular locus ofXξ is mapped into a proper analytic subgerm ofYη;
(4) the local ring of the sourceOX,ξ is Cohen–Macaulay.

Then,fξ is flat if and only if thenth analytic tensor powerOX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,ξ is a
torsion-freeOY,η-module.

Let Ω be an open set inCm. An analytic functionf ∈ O(Ω) is called aNash function
if it is algebraic over the ring of regular functions onΩ . An analytic setX is aNash set
if it can locally be defined by Nash functions, andNash mappingsare analytic mapping
whose all components are Nash functions (see Section 2 for details).

Note that in the case of finite modules, flatness is equivalent to freeness. Also, fo
modulesM andN over a local analytic algebraR, their analytic tensor product,M ⊗̂R N ,
equals the ordinary one,M ⊗R N . (By a local analytic algebrawe mean a ring of the
form C{x}/I , wherex = (x1, . . . , xm) andI is an ideal inC{x}.) Thus, the above theore
can be viewed as a generalization to morphisms of local analytic algebras of the foll
fundamental result of Auslander (the finite case being covered by our condition (3)):

Theorem 1.2 (Auslander [5, Theorem 3.2]).Let R be an unramified regular local ring o
dimensionn > 0 and letM be a finiteR-module. ThenM is R-free if and only if thenth
tensor powerM⊗n is a torsion-freeR-module.

(Auslander’s result was later extended by Lichtenbaum [14] to arbitrary regular
rings.) Theorem 1.1 is a step towards a proof of the following general claim (cf. [3,
jecture 2.4]):

Conjecture 1.3. Let ϕ :R → A be a homomorphism of local analyticC-algebras, where
R is regular of dimensionn. Then the following conditions are equivalent:

(i) A is R-flat;
(ii) thenth analytic tensor powerA ⊗̂R · · · ⊗̂R A is a torsion-freeR-module.

We believe there are good reasons to expect the conjecture be true, as explained
Also, it seems plausible that proving Conjecture 1.3 should eventually lead to obta
the following Galligo–Kwiecínski result by algebraic means:

Let R be a finitely generated regularC-algebra of dimensionn and letA be a finitely
generatedR-algebra. ThenA is R-flat if and only if thenth tensor powerA ⊗R · · ·

⊗RA is a torsion-freeR-module.
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This algebraic generalization of Theorem 1.2 was conjectured by Vasconcelos, who
it in the casen = 2 (see [18, Proposition 6.1]). The result was later proved by Galligo
Kwieciński (see Theorem 2.3 below) for arbitraryn, under the additional hypothesis th
the algebraA is equidimensional overC. The Galligo–Kwiecínski proof however make
use of transcendental methods that cannot be translated into a purely algebraic arg
(We recall their result and some of the methods in Section 2, as our proof of Theore
relies strongly on them.)

The results of this paper arose from our study of the relationship between degen
of the family of fibres of an analytic mapping and the existence ofvertical components
in fibre powers of the mapping [1,2]. It thus seems natural and more intuitive to wo
this setup, although most of the paper could be as well formulated in the language o
analytic algebras.

There are in fact two natural notions of avertical component(and some interestin
information about a morphism can be obtained by analyzing the relations between
see [2]): Letfξ :Xξ → Yη be a morphism of germs of analytic spaces. An irreduc
(isolated or embedded) componentWξ of Xξ is calledalgebraic verticalif there exists a
nonzero elementa ∈ OY,η such that (the pullback of)a belongs to the associated primep

in OX,ξ corresponding toWξ . Equivalently,Wξ is algebraic verticalif an arbitrarily small
representativeW of Wξ is mapped into a proper analytic subset of a neighbourhoo
η in Y . We say thatWξ is geometric verticalif an arbitrarily small representative ofWξ

is mapped into a nowhere dense subset of a neighbourhood ofη in Y . (In the context of
Galligo and Kwiecínski’s [9], this is equivalent to thehypergermfξ (Wξ ) having empty
interior inYη with the transcendental topology.)

The concept of a vertical component (introduced by Kwieciński in [12]) comes up nat
urally as an equivalent of torsion in algebraic geometry and the two notions of a ve
component coincide in the algebraic case (over an irreducible target). However, it
longer so in the analytic category. In principle, the existence of thegeometric vertical
components is a weaker condition than the presence of thealgebraic verticalones. Indeed
anyalgebraic verticalcomponent (over an irreducible target) isgeometric vertical, since a
proper analytic subset of a locally irreducible analytic set has empty interior. The con
is not true though, as can be seen in the following classical example of Osgood (c
Kapitel II, §5]):

f :C2 � (x, y) �→ (
x, xy, xyey

) ∈ C
3.

Here the image of an arbitrarily small neighbourhood of the origin is nowhere denseC3,
but its Zariski closure has dimension 3 and therefore the image is not contained in a
locally analytic subset of the target.

Thegeometric verticalcomponents have proved to be a powerful tool in analytic ge
etry (see [9,12,13]), allowing for the use of transcendental methods when commu
algebra seemed to fail. On the other hand, the algebraic approach, introduced in [1] a
has an advantage of a direct algebraic control over the geometry of analytic morphis
all the statements aboutalgebraic verticalcomponents (as opposed togeometric vertical)

can be restated in terms of torsion freeness of the local rings:
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Remark 1.4. fξ :Xξ → Yη has no (isolated or embedded) algebraic vertical compone
and only if the local ringOX,ξ is a torsion-freeOY,η-module.

(This follows from “prime avoidance,” see, e.g., [7, Section 3.2].)
Also, it seems plausible that algebraic properties of analytic morphisms, like fla

could be controlled by means ofalgebraic verticalcomponents rather than thegeometric
vertical ones. In addition to Theorem 1.1, we present a few more arguments for Co
ture 1.3 below.

1. In [12], Kwieciński showed that flatness of a morphismfξ :Xξ → Yη of germs of
analytic spaces, withYη reduced and irreducible, is equivalent to torsion freenes
all the analytic tensor powers

OX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,ξ︸ ︷︷ ︸
i times

for i � 1.

2. In fact, as we proved in [1] and [2], for a morphismfξ :Xξ → Yη and a finiteOX,ξ -
moduleM that is notOY,η-flat, already theµth analytic tensor power

M ⊗̂OY,η
· · · ⊗̂OY,η

M︸ ︷︷ ︸
µ times

has nonzeroOY,η-torsion, whereµ is the length of a minimal set of generators of t
flattener ideal ofM in OY,η. (See [6, Theorem 7.12] for the definition and univer
property of Hironaka’slocal flattener.)

3. The conjecture is true on a “reduced level,” under the hypothesis that the domain
pure dimension. That is, the following theorem holds (cf. [2, Theorem 2.2]):

Theorem 1.5. Let fξ :Xξ → Yη be a morphism of germs of analytic spaces. LetXξ be of
pure dimension and letYη be reduced and irreducible of dimensionn. Then the following
conditions are equivalent:

(i) fξ is open;
(ii) the reducednth analytic tensor power(OX,ξ ⊗̂OY,η

· · · ⊗̂OY,η
OX,ξ )red is a torsion-free

OY,η-module.

2. Toolbox

To keep the article self-contained, we gathered in this section most of the local an
and commutative algebra tools used in the course of the proof of our main result. W
with recalling the Nash category terminology (for a thorough treatment the reader is r
to [17]).

Let Ω be an open subset ofC
m, and letx = (x1, . . . , xm) be a system ofm complex
variables. A functionf analytic onΩ is called aNash functionat x0 ∈ Ω if there exist an
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open neighbourhoodU of x0 in Ω and a polynomialP(x, y) ∈ C[x, y], P �= 0, such that
P(x,f (x)) = 0 for x ∈ U . An analytic function is a Nash function onΩ if it is a Nash
function at every point ofΩ . An analytic mappingf = (f1, . . . , fn) :Ω → C

n is aNash
mappingif each of its components is a Nash function onΩ .

A subsetX of Ω is called aNash subsetof Ω if for every x0 ∈ Ω there exist an ope
neighbourhoodU of x0 in Ω and Nash functionsf1, . . . , fs on U , such thatX ∩ U =
{x ∈ U : f1(x) = · · · = fs(x) = 0}. A germXξ at ξ ∈ C

m is aNash germif there exists an
open neighbourhoodU of ξ in C

m such thatX ∩ U is a Nash subset ofU . Equivalently,
Xξ is a Nash germ if its defining ideal can be generated by power series algebrai
the polynomial ringC[x]; that is,OX,ξ

∼= C{x}/(f1, . . . , fs)C{x} with fj ∈ C〈x〉, j =
1, . . . , s, whereC〈x〉 denotes the algebraic closure ofC[x] in C[[x]].

The Nash category fits between the algebraic and analytic categories in a way t
lows use of transcendental methods to obtain strong algebraic results (like the one
after). Geometrically, Nash sets are built, locally, from analytic branches of algebraic
Moreover, with help of Artin’s approximation theorem [4, Theorem 1.7], one easily ob
the following:

Proposition 2.1 [3, Proposition 5.1].If W is an (isolated or embedded) irreducible com-
ponent of a Nash germ(respectively set), thenW is a Nash germ(respectively set) itself.

Next, notice the relationship between the fibre product of analytic mappings an
analytic tensor product. In fact, a reader not familiar with the concept may consid
following a definition of the analytic tensor product (see, e.g., [8, Section 0.28]):

Remark 2.2. Let f1 :X1 → Y and f2 :X2 → Y be holomorphic mappings of analyt
spaces, withf1(ξ1) = f2(ξ2) = η. Then the local ringsOXi,ξi

(i = 1,2) areOY,η-modules
and the local ring at(ξ1, ξ2) of the fibre productZ = X1 ×Y X2 satisfies the identity

OZ,(ξ1,ξ2) = OX1,ξ1 ⊗̂OY,η
OX2,ξ2.

In particular, for a morphismfξ :Xξ → Yη, we will tacitly identify theith analytic tensor
powerOX,ξ ⊗̂OY,η

· · · ⊗̂OY,η
OX,ξ with the local ring of thei-fold fibre powerOX{i},ξ {i} for

i � 1.

Let us now recall some results of Galligo and Kwieciński’s [9] that will play an impor-
tant role in the proof of Theorem 1.1:

Theorem 2.3 (Galligo–Kwiecínski [9, Theorem 6.1]).Let fξ :Xξ → Yη be a germ of a
complex analytic map of germs of complex analytic spaces. Suppose thatXξ andYη are
reduced, thatXξ is of pure dimension, and thatYη is smooth. Letn = dimYη. Then the
following conditions are equivalent:

(i) fξ is flat;

(ii) the canonical mapf {n}
ξ {n} :X{n}

ξ {n} → Yη has no(isolated or embedded) geometric vertical

components.
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Let t = (t1, . . . , tn) be a system of complex variables. For the rest of the paper,R will
stand for then-dimensional regular local ringC{t}. An R-moduleM is called analmost
finitely generatedR-module if there is a local analytic algebraA overR (i.e., a homomor-
phism of local analytic algebrasϕ :R → A) such thatM is a finiteA-module. (For our
purposes it is enough to think of modules of the formOX{i},ξ {i} , wherefξ :Xξ → Yη is a
morphism of germs of analytic spaces, withOY,η = R = C{t}.) The following rigidity of
the left derived functor of analytic tensor product holds (see [9, Proposition 2.2]):

Proposition 2.4. Let M and N be almost finitely generatedR-modules, and leti0 be an
integer. IfT̂orRi0(M,N) = 0, thenT̂orRi (M,N) = 0 for all i � i0.

Define theflat dimensionof anR-moduleM , denoted fd(M), as the length of a shor
estR-flat resolution ofM (i.e., a resolution byR-flat modules). We have the followin
fundamental flat dimension additivity formula:

Proposition 2.5 (Galligo–Kwiecínski [9, Proposition 2.10]).Let M and N be almost fi-

nitely generatedR-modules. IfT̂orRi (M,N) = 0 for all i � 1, then

fd(M) + fd(N) = fd
(
M ⊗̂R N

)
.

Remark 2.6. By [9, Theorem 2.7], the flat dimension of an almost finitely generatedR-
moduleM satisfies the following Auslander–Buchsbaum-type formula:

fd(M) + depth(M) = n = dimR.

Hence, for a torsion-free almost finitely generatedR-moduleM , we always have

fd(M) � n − 1.

Indeed, since no nonzero element ofR is a zerodivisor ofM , then depth(M) � 1.

Now let fξ :Xξ → Yη be anopenmorphism of germs of analytic spaces. LetXξ be
reduced of pure dimension, and letYη be smooth of dimensionn. Then, the hypotheses o
[9, Lemma 5.2] are satisfied and hence we obtain:

Lemma 2.7. There exist anR-flat almost finitely generated moduleF and a monomor-
phism ofR-modulesOX,ξ → F .

Next we observe thatalgebraic verticalcomponents in fibre powers carry over to high
powers. More precisely, for a morphismfξ :Xξ → Yη of germs of analytic spaces, whe
Yη is reduced and irreducible, we have the following:

Remark 2.8. If OX{k},ξ {k} is a torsion-freeOY,η-module, then so areOX{i},ξ {i} for i � k.

Indeed, fori < k, we have a canonical monomorphism ofOY,η-modules:
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OX{i},ξ {i} = OX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,ξ︸ ︷︷ ︸
i times

� m1 ⊗̂ · · · ⊗̂ mi

�→ m1 ⊗̂ · · · ⊗̂ mi ⊗̂ 1 ⊗̂ · · · ⊗̂ 1∈OX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,ξ︸ ︷︷ ︸
k times

= OX{k},ξ {k} .

Hence, the zerodivisors (inR) of OX{i},ξ {i} are among those ofOX{k},ξ {k} .

Finally, recall the notion of regularity in the sense of Gabrielov: A morphismfξ :Xξ →
Yη of germs of analytic spaces is calledGabrielov regularif, for every isolated irreducible
componentWξ of Xξ , dimη f (W) = dimη f (W) for an arbitrarily small representativeW
of Wξ , wheref (W) denotes the Zariski closure off (W) in a representative ofY atη (see,
e.g., [16, Section 1]).

3. Proof of the main result

Suppose first thatfξ :Xξ → Yη is flat. Then so are all of its fibre powersf
{i}
ξ {i} :X{i}

ξ {i} →
Yη (i � 1), as flatness is preserved by any base change (see [11, §6, Proposition 8
composition of flat mappings is flat. Hence, in particular (without any extra assumpt
OX{n},ξ {n} is a torsion-freeOY,η-module, by the characterization of flatness in terms
relations (see, e.g., [7, Corollary 6.5]).

For the proof of the other implication, we shall proceed in four cases, according
conditions in Theorem 1.1. The idea of the proof of cases (1) and (2) is to show th
everygeometric verticalcomponentWξ {n} in the n-fold fibre powerX{n}

ξ {n} , the restriction
f

{n}
ξ {n} |Wξ {n} is Gabrielov regular, and hence in factWξ {n} is algebraic vertical. This reduces

the problem to Theorem 2.3. The proof of the third case uses our openness criterion
orem 1.5) paired with the techniques of Galligo and Kwieciński outlined in the previou
section. The last case is a straightforward consequence of Theorem 1.5.

Case 1

Let dim(Yη) = n < 3 and suppose that the morphismfξ :Xξ → Yη is not flat. We
shall show that there exists analgebraic verticalcomponent in then-fold fibre power
f

{n}
ξ {n} :X{n}

ξ {n} → Yη, which by Remark 1.4 is equivalent toOX{n},ξ {n} having nonzero torsion
overOY,η.

As noted above, the problem can be reduced to Theorem 2.3 by proving that
geometric verticalcomponentWξ {n} in X

{n}
ξ {n} is algebraic vertical. This is so because of th

following simple argument.
Let Wξ {n} be an (isolated or embedded) irreducible component ofX

{n}
ξ {n} . Thenf

{n}
ξ {n} :

X
{n}
ξ {n} → Yη can be extended to a holomorphic mappingf {n} :X{n} → Y (of the n-fold

fibre power of a reduced purely-dimensionalX over a smoothn-dimensionalY ) so that

Wξ {n} extends to a componentW of X{n}. Denote by nR(f {n}|W) the set of points where
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f {n}|W is not regular in the sense of Gabrielov (see [16, Section 1]). Then, by Remm
Rank Theorem, nR(f {n}|W) is a subset of the locus of nongeneric fibre dimension inW ,
and thus the image of nR(f {n}|W) is of codimension (at least) two in the imagef {n}(W).
If Wξ {n} is geometric vertical, then the imagef {n}(W) is already of codimension (at leas
one with respect toY , and hence

dimf {n}(nR
(
f {n}|W ))

� dimY − 1− 2� −1,

i.e., f {n}(nR(f {n}|W)) = ∅. Thus,f {n}|W is Gabrielov regular, so thatWξ {n} is analge-
braic verticalcomponent.

Case 2

Suppose that the Nash morphismfξ :Xξ → Yη of Nash germs is not flat, and letWξ {n}

be ageometric verticalcomponent inf {n}
ξ {n} :X{n}

ξ {n} → Yη, which exists by Theorem 2.3
SinceXξ is a Nash germ, then obviously so are all its fibre powersX

{i}
ξ {i} (i � 1). Hence, by

Proposition 2.1, our componentWξ {n} is a Nash germ.

Consider the morphismf {n}
ξ {n} |Wξ {n} :Wξ {n} → Yη of Nash germs. By passing to the gra

of f , we can assume that

ξ {n} = (0, η), Wξ {n} ⊂ (
C

mn × Y
)
ξ {n} ,

andf
{n}
ξ {n} |Wξ {n} is a germ atξ {n} of the canonical projectionπ :Cmn × Y → Y . This makes

f
{n}
ξ {n} a germ of a polynomial mapping. Next, observe thatWξ {n} being Nash, there exists

germ of an algebraic setZξ {n} in (Cmn × Y)ξ {n} such that

Wξ {n} ⊂ Zξ {n} and dimZξ {n} = dimWξ {n}

(cf. [17, Theorem 2.10]). By Chevalley’s Theorem [15, Chapter 7, §8.3], the imagef {n}(Z)

of an arbitrarily small representativeZ of Zξ {n} is algebraic constructible, and hence

dimη f {n}(W) � dimη f {n}(Z) = dimη f {n}(Z) = dimη f {n}(W),

which shows thatWξ {n} is algebraic vertical.

Remark 3.1. Note that the above argument cannot be extended beyond the Nash ca
In general, a fibre power of a Gabrielov regular morphism of germs of analytic space
not be regular itself: Letfξ :Xξ → Yη be a morphism of germs of analytic spaces withXξ

of pure dimension andYη irreducible of dimensionn. Let Y be a locally irreducible repre
sentative ofYη and letX be a pure-dimensional representative ofXξ such thatf (X) ⊂ Y .
DefineS = {y ∈ Y : dimf −1(y) > l}, wherel is the minimal fibre dimension off on X,

and suppose that dimη S = n, whereS denotes the Zariski closure ofS in Y . Then the top
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fibre powerX{n}
ξ {n} contains an isolatedgeometric verticalcomponentW which is notalge-

braic vertical. In particular,f {n}
ξ {n} is not Gabrielov regular (see [2, Proposition 3.1] and

Example 3.3]).
In the next section we give a characterization of analytic morphisms that are Gab

regular together with all their fibre powers.

Case 3

Let Zη ⊂ Yη be a proper analytic subgerm such that the singular locus ofXξ is mapped
into Zη (i.e., the Galligo–Kwiecínski hypergermfξ (SingXξ) is contained inZη).

Since, by assumption, thenth analytic tensor powerOX,ξ ⊗̂OY,η
· · · ⊗̂OY,η

OX,ξ is a

torsion-freeOY,η-module, then (Remarks 1.4 and 2.2) then-fold fibre powerf {n}
ξ {n} :X{n}

ξ {n} →
Yη has noalgebraic verticalcomponents. In particular, there are noisolated algebraic

vertical components inX{n}
ξ {n} , and hencefξ is open, by Theorem 1.5.

Openness being an open condition, we can extendfξ :Xξ → Yη to an open analytic
mappingf :X → Y of reduced analytic spaces, whereX is of pure dimension andY is
smooth of dimensionn. Moreover, this can be done so thatZη extends to a proper analyt
subsetZ of Y with f (SingX) ⊂ Z. We may now conclude thatf is flat overY \ Z, as for
a mapping of smooth spaces openness is equivalent to flatness (cf. [8, Proposition
Hence alsof {k} :X{k} → Y is flat overY \ Z for everyk � 1, because this is so locally.

Fix k ∈ {1, . . . , n − 1}. We will now show thatT̂or
OY,η

i (OX,ξ ,OX{k},ξ {k}) = 0 for all
positive integersi. For simplicity of notation, letR = OY,η, M = OX,ξ , andN = OX{k},ξ {k} .
By Lemma 2.7, we have an exact sequence of almost finitely generatedR-modules

0→ M → F → F/M → 0,

whereF is R-flat. Thus, after tensoring withN , we get an exact sequence

0→ T̂orR1 (F/M,N)
λ→ M ⊗̂R N → F ⊗̂R N → F/M ⊗̂R N → 0

and isomorphisms

T̂orRi+1(F/M,N) ∼= T̂orRi (M,N) for all i � 1.

Pick anym ∈ T̂orR1 (F/M,N). There is a nonzeror ∈ R such thatrm = 0. In fact, the
flatness of the restrictionf {k}|(f {k})−1(Y \ Z) implies that anyr with {r = 0}η ⊃ Zη will
do. Therefore, for some nonzeror ∈ R, r · λ(m) = 0 in M ⊗̂R N ∼= OX{k+1},ξ {k+1} , and
hence eitherλ(m) = 0 or elseOX{k+1},ξ {k+1} has nontrivial torsion overOY,η. The latter is
impossible though, by our assumptions and Remark 2.8, ask + 1� n. Thus, by injectivity
of λ, m = 0, whence
T̂orR1 (F/M,N) = 0.
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The rigidity of T̂orR (Proposition 2.4) now implies that

T̂orRi+1(F/M,N) = 0

and hence

T̂orRi (M,N) = 0 for all i � 1,

as required.
Finally, by the flat dimension formula (Proposition 2.5) and torsion freeness ofOX{n},ξ {n}

(see Remark 2.6), we obtain

n − 1� fd(OX{n},ξ {n}) = fd(OX,ξ ) + fd(OX{n−1},ξ {n−1}) = · · · = n · fd(OX,ξ ).

Hence fd(OX,ξ ) = 0, so thatOX,ξ is OY,η-flat.

Case 4

Let fξ :Xξ → Yη be a morphism of germs of analytic spaces, whereOX,ξ is Cohen–
Macaulay andOY,η is regular of dimensionn. Then, by [8, Proposition 3.20],fξ is flat if
and only if it is open. Hence, if there are noalgebraic verticalcomponents inOX{n},ξ {n} ,
the flatness offξ follows from Theorem 1.5.

4. Fibre powers and Gabrielov regularity

As pointed out in Remark 3.1, in general a fibre power of a Gabrielov regular ma
need not be regular itself. This is possible even in the case of mappings between
spaces, as shown in [2, Example 3.3].

It is interesting to know how to avoid such “hidden irregularity” phenomena. Ide
one would like to have a condition on a morphismfξ :Xξ → Yη, which would force all

fibre powersf {i}
ξ {i} :X{i}

ξ {i} → Yη (i � 1) to behave regularly in the sense of Gabrielov on b
the isolated and embedded components. (Note that this is a stronger property than
only dominating oralgebraic verticalcomponents in theX{i}

ξ {i} for i � 1.) Such a criterion
would automatically yield Conjecture 1.3.

For the time being, we are only able to address this problem in the reduced case (
sition 4.2 below), although it seems plausible that one could resolve the general pr
along the lines of Propositions 4.1 and 4.2.

Let fξ :Xξ → Yη be a morphism of germs of analytic spaces, withYη irreducible of
dimensionn. Let Y be ann-dimensional irreducible representative ofYη, and letX be a
representative ofXξ such that the components ofX are precisely the representatives inX

of the components ofXξ andf (X) ⊂ Y (wheref represents the germfξ ). Furthermore
let

( )

fbdxf = dimx f −1 f (x)
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be thefibre dimensionof f at a pointx.
In the remainder of this section we will use the following notation of [2]:l =

min{fbdxf : x ∈ X}, k = max{fbdxf : x ∈ X}, andAj = {x ∈ X: fbdxf � j} for l �
j � k. We then haveX = Al ⊃ Al+1 ⊃ · · · ⊃ Ak , and by the Cartan–Remmert Theore
(see [15]), theAj are analytic inX. DefineBj = f (Aj ) = {y ∈ Y : dimf −1(y) � j} for
l � j � k. The upper semi-continuity of fbdxf (as a function ofx) implies that the germ
(Aj )ξ and(Bj )η are independent of the choices of representatives made above.

Note that, except forBk (cf. proof of Proposition 4.1 below), theBj may not even be
semianalytic in general. Nonetheless, there is an interesting connection between th
tion of the target by fibre dimensionY ⊃ Bl ⊃ Bl+1 ⊃ · · · ⊃ Bk and the isolated irreducibl
components of then-fold fibre powerX{n} that we describe below.

Proposition 4.1. Under the above assumptions, letX{n} = ⋃
i∈I Wi be the decompositio

into finitely many isolated irreducible components throughξ {n}. Then

(a) For eachj = l, . . . , k, there exist componentsWij ,1, . . . ,Wij ,pj
of X{n} such that

Bj =
pj⋃

q=1

f {n}(Wij ,q).

(b) If y ∈ Bj with dimf −1(y) = s (s � j), Z is an irreducible component of the fib
(f {n})−1(y) of dimensionns, and W is an irreducible component ofX{n} contain-
ing Z, thenf {n}(W) ⊂ Bj .

Proof. Fix j � l + 1 (the statement is trivial forj = l asBl = f (X)). Pick anyy ∈ Bj .
Then dimf −1(y) = s for somes � j . Let Z be an irreducible component of the fib
(f {n})−1(y) of dimensionns, and letW be an irreducible component ofX{n} containingZ.
We will show thatf {n}(W) ⊂ Bj .

Suppose to the contrary thatW ∩ (X{n} \ (f {n})−1(Bj )) �= ∅, that is, suppose that the
existsz = (x1, . . . , xn) ∈ W such thatf (xi) ∈ Y \Bj for i = 1, . . . , n. Then fbdxi

f � j −1,
i = 1, . . . , n, and hence fbdzf {n} � n(j − 1) = nj − n. In particular, the generic fibr
dimension off {n}|W is not greater thannj − n. Since rank(f {n}|W) � dimY = n, then
dimW � (nj − n) + n = nj .

Now we have:W ⊃ Z, dimW � nj , dimZ = ns � nj , and bothW andZ irreducible.
This is only possible whenW = Z, and hencef {n}(W) = f {n}(Z) = {y} ⊂ Bj , a contra-
diction. Thereforef {n}(W) ⊂ Bj , which completes the proof of part (b) of our propositio

Part (a) follows immediately, since for anyy ∈ Bj and any irreducible componentZ of
(f {n})−1(y) of the highest dimension, there exists an isolated irreducible componentW of
X{n} that containsZ. �

We can now establish a criterion for an analytic morphism to be Gabrielov regul

gether with all of its fibre powers:
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Proposition 4.2. Let fξ :Xξ → Yη be a morphism of germs of analytic spaces, withYη

irreducible of dimensionn. The following conditions are equivalent:

(i) f
{i}
ξ {i} :X{i}

ξ {i} → Yη is Gabrielov regular for alli � 1;
(ii) all the restrictionsf |Aj are Gabrielov regular(j = l, . . . , k).

Proof. Suppose first thatf |Aj (j = l, . . . , k) are regular. Fix a positive integeri and letW
be an isolated irreducible component ofX{i}. Since the components ofX{i} are precisely
the representatives of those ofX

{i}
ξ {i} , it suffices to show thatf {i}|W is regular.

Let q be the greatest integer for which the generic fibreF = F1 × · · · × Fi of f {i}|W
contains a componentFm of dimensionq. Thenf {i}(W) ⊂ Bq = f (Aq). The property
of being a fibre of dimensionq is an open condition onAq . HenceW is induced by
an irreducible componentV of Aq with the generic fibre dimension off |V equalq, in
the sense that there exists a componentV of Aq such thatf {i}(W) = f (V ). By assump-
tion, dimη f (V ) = dimη f (V ) (where closure is in the Zariski topology inY ), hence also

dimη f {i}(W) = dimη f {i}(W); i.e.,f {i}|W is Gabrielov regular.
Suppose now that there existsj ∈ {l, . . . , k} for which f |Aj is not regular. We shal

show that then regularity off {n}
ξ {n} :X{n}

ξ {n} → Yη fails, wheren = dimY .

Fix j ∈ {l, . . . , k} such thatf |Aj is not regular. Picky ∈ Bj with dimf −1(y) = j ,
and letZ be an isolated irreducible component of the fibre(f {n})−1(y) of dimensionnj .
Let W be an isolated irreducible component ofX{n} containingZ. Thenf {n}(W) ⊂ Bj ,
by Proposition 4.1(b). Moreover,f {n}|W has no fibres of dimension less than or eq
to n(j − 1). Indeed, otherwise the generic fibre dimension off {n}|W would be at mos
n(j − 1), so that dimW � n(j − 1) + n = nj = dimZ, and henceW = Z, a contradiction
(see the proof of Proposition 4.1). Thus, the generic fibreF = F1 × · · · × Fn of f {n}|W
contains a componentFm of dimensionj .

Now, there is an isolated irreducible componentV of Aj such that dimη f (V ) >

dimη f (V ) and the generic fibre dimension off |V is j . Our y ∈ Bj can then be chose
from f (V ), andZ a component of((f |V )−1(y))n. Since being aj -dimensional fibre is an
open condition onAj , then (as in the first part of the proof) we find thatf {n}(W) = f (V ),

so that dimη f {n}(W) > dimη f {n}(W). Thusf
{n}
ξ {n} :X{n}

ξ {n} → Yη is not regular. �
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