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Abstract

Let fz:Xg — Y, be a morphism of germs of complex analytic spaces, witgrdés reduced
of pure dimension and;, is smooth of dimension. We give several sufficient conditions for the
foIIowmg characterlzatlon of flatness to holgk is flat if and only if thenth analytic tensor power
Ox ¢ ®@Y Oxg is a torsion-freey ,-module.
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1. Introduction and main result

Given a holomorphic mapping : X — Y of complex analytic spaces, with(&) = 7,
let f¢ : X — Y, denote the germ of até&, and Ietf{’ X{’} — Y, be the germ at !} =

(€,...,&) € X' of the induced canonical map from théold f|bre power ofX overY. The
main result of this paper is the following criterion for flatness of analytic morphisms:
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Theorem 1.1. Let f:: X — Y, be a morphism of germs of analytic spaces, whége
is reduced of pure dimension ar is smooth of dimensiom. Suppose that one of the
following conditions is satisfied

1) n<3;

(2) fe:Xe — Y, is a Nash morphism of Nash germs

(3) the singular locus ok is mapped into a proper analytic subgermigf
(4) the local ring of the sourc®y ¢ is Cohen—Macaulay.

Then, f; is flat if and only if thenth analytic tensor poweOy : ®o,, - - ®o,, Ox.¢ is a
torsion-freeOy ,,-module.

Let £2 be an open set it™. An analytic functionf € O(£2) is called aNash function
if it is algebraic over the ring of regular functions gh. An analytic setX is aNash set
if it can locally be defined by Nash functions, aNdsh mappingsre analytic mappings
whose all components are Nash functions (see Section 2 for details).

Note that in the case of finite modules, flatness is equivalent to freeness. Also, for finite
modulesM andN over a local analytic algebrR, their analytic tensor product/ ®x N,
equals the ordinary oné/ ®z N. (By alocal analytic algebrawe mean a ring of the
form C{x}/I, wherex = (x1, ..., x,,) and/ is an ideal inC{x}.) Thus, the above theorem
can be viewed as a generalization to morphisms of local analytic algebras of the following
fundamental result of Auslander (the finite case being covered by our condition (3)):

Theorem 1.2 (Auslander [5, Theorem 3.2]Let R be an unramified regular local ring of
dimensiom > 0 and letM be a finiteR-module. ThenV is R-free if and only if thexth
tensor powe ®" is a torsion-freeR-module.

(Auslander’s result was later extended by Lichtenbaum [14] to arbitrary regular local
rings.) Theorem 1.1 is a step towards a proof of the following general claim (cf. [3, Con-
jecture 2.4)):

Conjecture 1.3. Letgp: R — A be a homomorphism of local analyti¢-algebras, where
R is regular of dimensiom. Then the following conditions are equivalent

(i) Ais R-flat;
(i) thenth analytic tensor poweA Qg --- ®r A is a torsion-freeR-module.

We believe there are good reasons to expect the conjecture be true, as explained below.
Also, it seems plausible that proving Conjecture 1.3 should eventually lead to obtaining
the following Galligo—Kwiechski result by algebraic means:

Let R be a finitely generated regul&t-algebra of dimension and letA be a finitely
generatedR-algebra. ThenA is R-flat if and only if thenth tensor powed Qg - - -
®RrA is a torsion-freeR-module.
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This algebraic generalization of Theorem 1.2 was conjectured by Vasconcelos, who proved
it in the case: = 2 (see [18, Proposition 6.1]). The result was later proved by Galligo and
Kwiecihski (see Theorem 2.3 below) for arbitraryunder the additional hypothesis that

the algebrad is equidimensional oveE. The Galligo—Kwiednski proof however makes

use of transcendental methods that cannot be translated into a purely algebraic argument.
(We recall their result and some of the methods in Section 2, as our proof of Theorem 1.1
relies strongly on them.)

The results of this paper arose from our study of the relationship between degeneracies
of the family of fibres of an analytic mapping and the existenceesfical components
in fibre powers of the mapping [1,2]. It thus seems natural and more intuitive to work in
this setup, although most of the paper could be as well formulated in the language of local
analytic algebras.

There are in fact two natural notions ofvartical componentand some interesting
information about a morphism can be obtained by analyzing the relations between them,
see [2]): Letf: : Xe — Y, be a morphism of germs of analytic spaces. An irreducible
(isolated or embedded) componé#it of X¢ is calledalgebraic verticalif there exists a
nonzero element € Oy, such that (the pullback of) belongs to the associated prime
in Ox ¢ corresponding tdV; . Equivalently,W; is algebraic verticalif an arbitrarily small
representativéV of W is mapped into a proper analytic subset of a neighbourhood of
n in Y. We say thatV; is geometric verticalf an arbitrarily small representative ¥
is mapped into a nowhere dense subset of a neighbourhogdnof . (In the context of
Galligo and Kwieciski's [9], this is equivalent to thlypergermf: (Wg) having empty
interior in ¥;, with the transcendental topology.)

The concept of a vertical component (introduced by Kwiski in [12]) comes up nat-
urally as an equivalent of torsion in algebraic geometry and the two notions of a vertical
component coincide in the algebraic case (over an irreducible target). However, it is no
longer so in the analytic category. In principle, the existence ofgd@metric vertical
components is a weaker condition than the presence aligfebdraic verticalones. Indeed,
anyalgebraic verticalcomponent (over an irreducible targetgsometric verticalsince a
proper analytic subset of a locally irreducible analytic set has empty interior. The converse
is not true though, as can be seen in the following classical example of Osgood (cf. [10,
Kapitel Il, 85]):

fiC%5 (x,y) ~ (x,xy,xyev) eCs.

Here the image of an arbitrarily small neighbourhood of the origin is nowhere defiSe in
but its Zariski closure has dimension 3 and therefore the image is not contained in a proper
locally analytic subset of the target.

Thegeometric verticatomponents have proved to be a powerful tool in analytic geom-
etry (see [9,12,13]), allowing for the use of transcendental methods when commutative
algebra seemed to fail. On the other hand, the algebraic approach, introduced in [1] and [2],
has an advantage of a direct algebraic control over the geometry of analytic morphisms, as
all the statements aboatgebraic verticalcomponents (as opposeddeometric verticgl
can be restated in terms of torsion freeness of the local rings:
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Remark 1.4. f¢: X: — Y, has no (isolated or embedded) algebraic vertical components if
and only if the local ringDy ¢ is a torsion-free)y ,-module.

(This follows from “prime avoidance,” see, e.g., [7, Section 3.2].)

Also, it seems plausible that algebraic properties of analytic morphisms, like flatness,
could be controlled by means afgebraic verticalcomponents rather than tigeometric
vertical ones. In addition to Theorem 1.1, we present a few more arguments for Conjec-
ture 1.3 below.

1. In [12], KwieciAski showed that flatness of a morphisfn: X; — Y, of germs of
analytic spaces, witly, reduced and irreducible, is equivalent to torsion freeness of
all the analytic tensor powers

Ox e ®Om "'®Om Oxge fori>1

i times

2. In fact, as we proved in [1] and [2], for a morphisfa: X — Y, and a finiteOx ¢-
moduleM that is notOy ,-flat, already the:th analytic tensor power

M ®Oy,n "'®OM M

u times

has nonzer@y ,-torsion, whereu is the length of a minimal set of generators of the
flattener ideal ofM in Oy ,. (See [6, Theorem 7.12] for the definition and universal
property of Hironaka'docal flattener)

3. The conjecture is true on a “reduced level,” under the hypothesis that the domain be of
pure dimension. That is, the following theorem holds (cf. [2, Theorem 2.2]):

Theorem 1.5. Let f; : X — Y, be a morphism of germs of analytic spaces. Xgtbe of
pure dimension and lef, be reduced and irreducible of dimensienThen the following
conditions are equivalent

(i) f:isopen A .
(i) the reducedith analytic tensor powe(Ox : ®0,, - - @0y, Ox ¢)red IS a torsion-free
Oy,,-module.

2. Toolbox

To keep the article self-contained, we gathered in this section most of the local analytic
and commutative algebra tools used in the course of the proof of our main result. We start
with recalling the Nash category terminology (for a thorough treatment the reader is refered
to [17]).

Let 2 be an open subset @, and letx = (x1, ..., x;;) be a system ofz complex
variables. A functionf analytic ons2 is called aNash functiorat xg € £2 if there exist an
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open neighbourhoold of xg in £2 and a polynomialP (x, y) € C[x, y], P # 0, such that
P(x, f(x)) =0 for x € U. An analytic function is a Nash function o2 if it is a Nash
function at every point of2. An analytic mappingf = (f1, ..., fz):§2 — C" is aNash
mappingif each of its components is a Nash function@n

A subsetX of §2 is called aNash subsetf £2 if for every xg € §2 there exist an open
neighbourhood’ of xg in 2 and Nash functiongi, ..., f; on U, such thatX N U =
{xeU: fix)=---= fi(x) =0}. AgermX; até € C™ is aNash gernif there exists an
open neighbourhood of & in C™ such thatX N U is a Nash subset di. Equivalently,

X¢ is a Nash germ if its defining ideal can be generated by power series algebraic over
the polynomial ringC[x]; that is, Ox ¢ = C{x}/(f1,..., fs)C{x} with f; € C(x), j =
1,...,s, whereC(x) denotes the algebraic closure@ffx] in C[[x]].

The Nash category fits between the algebraic and analytic categories in a way that al-
lows use of transcendental methods to obtain strong algebraic results (like the one we are
after). Geometrically, Nash sets are built, locally, from analytic branches of algebraic sets.
Moreover, with help of Artin’s approximation theorem [4, Theorem 1.7], one easily obtains
the following:

Proposition 2.1 [3, Proposition 5.1]If W is an (isolated or embedd@drreducible com-
ponent of a Nash gerifmrespectively s@tthenW is a Nash gernfrespectively s¢titself.

Next, notice the relationship between the fibre product of analytic mappings and the
analytic tensor product. In fact, a reader not familiar with the concept may consider the
following a definition of the analytic tensor product (see, e.g., [8, Section 0.28]):

Remark 2.2. Let f1:X; — Y and f2:X> — Y be holomorphic mappings of analytic
spaces, withf1(£1) = f2(&2) = n. Then the local ring®y, ¢, (i = 1, 2) areOy, ,-modules
and the local ring at£1, £2) of the fibre producZ = X1 xy X2 satisfies the identity

Oz.¢1.60 = Ox1.6, ®0y.,, Oxz.6-

In particular, for a morphisnf: : X — Y,,, we will tacitly identify theith analytic tensor
powerOyx : ®oy,, - - ®oy,, Ox.¢ With the local ring of the-fold fibre powerO . ¢, for
i>1.

Let us now recall some results of Galligo and Kwirestii's [9] that will play an impor-
tant role in the proof of Theorem 1.1:

Theorem 2.3 (Galligo—Kwieciski [9, Theorem 6.1])Let f:: X — Y, be a germ of a
complex analytic map of germs of complex analytic spaces. SupposElzaid Y, are
reduced, thatX¢ is of pure dimension, and that, is smooth. Let = dimY;. Then the
following conditions are equivalent

(i) feis flat
(ii) the canonical map‘;{',’l}, x

g = Y, has no(isolated or embeddgdeometric vertical
components.
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Letr = (t1,...,t,) be a system of complex variables. For the rest of the paperil
stand for then-dimensional regular local rin@{¢}. An R-moduleM is called analmost
finitely generatedR-module if there is a local analytic algeb#aover R (i.e., a homomor-
phism of local analytic algebrag: R — A) such thatM is a finite A-module. (For our
purposes it is enough to think of modules of the fafhg ¢u, where fz : Xz — Y, is a
morphism of germs of analytic spaces, wifly ,, = R = C{¢}.) The following rigidity of
the left derived functor of analytic tensor product holds (see [9, Proposition 2.2]):

Proposition 2.4. Let M and N be almost finitely generatel-modules, and lety be an
integer. IfT?r,-’Z(M, N) =0, thenTor* (M, N) =0for all i > i.

Define theflat dimensiorof an R-module M, denoted fdM), as the length of a short-
est R-flat resolution ofM (i.e., a resolution byR-flat modules). We have the following
fundamental flat dimension additivity formula:

Proposition 2.5 (Galligo—Kwieciski [9, Proposition 2.10])Let M and N be almost fi-
nitely generatedk-modules. Iff&rf(M, N)=0forall i >1, then

fd(M) + fd(N) = fd(M Q& N).

Remark 2.6. By [9, Theorem 2.7], the flat dimension of an almost finitely generaed
moduleM satisfies the following Auslander—Buchsbaum-type formula:

fd(M) + depti(M) =n =dimR.
Hence, for a torsion-free almost finitely generategnoduleM, we always have
fd(M)<n -1
Indeed, since no nonzero elementiis a zerodivisor oV, then depthM) > 1.
Now let f¢: X — Y, be anopenmorphism of germs of analytic spaces. L&t be
reduced of pure dimension, and ¥t be smooth of dimensiom. Then, the hypotheses of

[9, Lemma 5.2] are satisfied and hence we obtain:

Lemma 2.7. There exist ank-flat almost finitely generated module and a monomor-
phism ofR-modulesOx ¢ — F.

Next we observe thatigebraic verticacomponents in fibre powers carry over to higher
powers. More precisely, for a morphisfa: X — Y, of germs of analytic spaces, where
Y, is reduced and irreducible, we have the following:

Remark 2.8. If Oxw ¢ is a torsion-freeDy ,-module, then so ar@y ¢ for i <k.
Indeed, fori < k, we have a canonical monomorphism@y ,-modules:
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Oy gt = Ox.e ®0y, - ®0y, Oxed2m1&--- & m;

i times

M - @Ome®Lle---®leOxe ®@Y_” ~--®@Y,” Ox.& = Oxw gn.

k times

Hence, the zerodivisors (iR) of O ¢ are among those @y g .

Finally, recall the notion of regularity in the sense of Gabrielov: A morphfsmX; —
Y, of germs of analytic spaces is call€&brielov regularif, for every isolated irreducible
componentVe of X¢, dim, (W) =dim, (W) for an arbitrarily small representativé
of W¢, where f (W) denotes the Zariski closure giW) in a representative df atn (see,
e.g., [16, Section 1]).

3. Proof of the main result

Suppose first thaf: : X¢ — Y, is flat. Then so are all of its fibre poweyg(’[}, :Xé’{,}.} —
Y, (i > 1), as flatness is preserved by any base change (see [11, §6, Proposition 8]) and a
composition of flat mappings is flat. Hence, in particular (without any extra assumptions),
Ox g is a torsion-freeOy ,-module, by the characterization of flatness in terms of
relations (see, e.g., [7, Corollary 6.5]).

For the proof of the other implication, we shall proceed in four cases, according to the
conditions in Theorem 1.1. The idea of the proof of cases (1) and (2) is to show that, for

everygeometric verticatomponent¥, in the n-fold fibre powerXé””},, the restriction

fé{{f,}, |Wein is Gabrielov regular, and hence in fdét, is algebraic vertical This reduces

the problem to Theorem 2.3. The proof of the third case uses our openness criterion (The-
orem 1.5) paired with the techniques of Galligo and Kwisg&i outlined in the previous
section. The last case is a straightforward consequence of Theorem 1.5.

Case 1l

Let dim(Y,) = n < 3 and suppose that the morphisfa: X — Y, is not flat. We
shall show that there exists aigebraic verticalcomponent in the:-fold fibre power
fg(’;}, :Xé’{n}, — Yy, which by Remark 1.4 is equivalent @ ¢ having nonzero torsion
overQOy,j,.

As noted above, the problem can be reduced to Theorem 2.3 by proving that every

geometric verticatomponenWe, in Xé'(’}, is algebraic vertical This is so because of the
following simple argument.

Let Wi be an (isolated or embedded) irreducible componem’éﬁ,f,. Then f;{’f,}} :

Xé'('}) — Y, can be extended to a holomorphic mappifig) : X"} — v (of the n-fold
fibre power of a reduced purely-dimensiork&lover a smooth-dimensionalY) so that
W, extends to a componefit of X"}, Denote by nRf )| W) the set of points where
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£ W is not regular in the sense of Gabrielov (see [16, Section 1]). Then, by Remmert’s
Rank Theorem, nRf}|W) is a subset of the locus of nongeneric fibre dimensioWin

and thus the image of ™| W) is of codimension (at least) two in the imagé (w).

If W) is geometric verticalthen the imagg ! (W) is already of codimension (at least)
one with respect t@’, and hence

dim " (nR(f " W)) <dimy —1-2< -1,

ie., fIMR(F™M|W)) = 0. Thus, f|W is Gabrielov regular, so thav, is analge-
braic verticalcomponent.

Case 2

Suppose that the Nash morphigin: Xz — Y, of Nash germs is not flat, and 18,
be ageometric verticacomponent inf;('ff, :Xé’(’,% — Y, which exists by Theorem 2.3.
SinceX¢ is a Nash germ, then obviously so are all its fibre powell‘{g (i > 1). Hence, by
Proposition 2.1, our componeit:,; is a Nash germ.

Consider the morphism;:i}, |Wetn : Wy — Y of Nash germs. By passing to the graph
of f, we can assume that

§M =), Wem C (C™ x¥) .

andf;(’,‘l}”Wg{n) is a germ at " of the canonical projection : C"™* x ¥ — Y. This makes
{'fl} a germ of a polynomial mapping. Next, observe that,; being Nash, there exists a
gln)

germ of an algebraic Sel ) in (C™" x Y)em such that

Wg(n} C Zé[n) and ding{n) = d|m Wé{")

(cf. [17, Theorem 2.10]). By Chevalley’s Theorem [15, Chapter 7, §8.3], the infifigeZ)
of an arbitrarily small representati&of Z, is algebraic constructible, and hence

dim, £ (W) < dim, fi"(2) = dim, f"(z) = dim, f"w),
which shows thaiV;, is algebraic vertical

Remark 3.1. Note that the above argument cannot be extended beyond the Nash category.
In general, a fibre power of a Gabrielov regular morphism of germs of analytic spaces need
not be regular itself: Lef: : X — Y, be a morphism of germs of analytic spaces wkth

of pure dimension and, irreducible of dimensiom. LetY be a locally irreducible repre-
sentative oft;, and letX be a pure-dimensional representativeXefsuch thatf (X) C Y.
DefineS = {y € Y: dim f~1(y) > I}, wherel is the minimal fibre dimension of on X,

and suppose that dip$ = n, whereS denotes the Zariski closure 6fin Y. Then the top
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fibre powerXé"} contains an isolategeometric verticacomponent® which is notalge-
braic vertical In part|cularf{"} is not Gabrielov regular (see [2, Proposition 3.1] and [2,
Example 3.3]).

In the next section we give a characterization of analytic morphisms that are Gabrielov
regular together with all their fibre powers.

Case 3

Let Z, C Y, be a proper analytic subgerm such that the singular loc& é¢ mapped
into Z,, (| e., the Galligo—Kwiediski hypergermy: (SingX¢) is contained irnz,).

Slnce by assumption, theth analytic tensor powe®y ¢ ®oy,7 ®oy,7 Oxeis a
torsion-free0y ,-module, then (Remarks 1.4 and 2.2) #hiold fibre powerfg{{,,, : Xé’{n})

Y, has noalgebraic verticalcomponents. In particular, there are isolated algebraic
vertical components |tX§’(’}} and hencef; is open, by Theorem 1.5.

Openness being an open condition, we can extgénds — Y, to an open analytic
mappingf : X — Y of reduced analytic spaces, wheXeis of pure dimension andl is
smooth of dimension. Moreover, this can be done so tt#f extends to a proper analytic
subsetZ of Y with f(SingX) C Z. We may now conclude that is flat overY \ Z, as for
a mapping of smooth spaces openness is equivalent to flatness (cf. [8, Proposition 3.20]).
Hence alsof %} : XK — v is flat overY \ Z for everyk > 1, because this is so locally.

Fix k € {1,...,n — 1}. We will now show thatTor " (Ox ¢, Oxw gw) = O for all
positive integers. For simplicity of notation, leR = Oy, ,;, M = Ox ¢, andN = Oxu ¢n -
By Lemma 2.7, we have an exact sequence of almost finitely geneRateodules

0O—-M-—F—F/M—Q,

whereF is R-flat. Thus, after tensoring witV, we get an exact sequence
0— Tor\(F/M,N) 5> M&g N > F&r N — F/M &g N — 0
and isomorphisms
Tor, +1(F/M N) “‘Tor (M,N) foralli>1

Pick anym € f&rf(F/M, N). There is a nonzerp € R such that-m = 0. In fact, the
flatness of the restrictiogi X |(f*))~1(y \ Z) implies that any- with {r = 0}, > Z,, will
do. Therefore, for some nonzeroc R, r - A(m) =0 in M ®g N = Oyp+y ) gtk and
hence eithei(m) =0 or else(’)x(m;’g(m) has nontrivial torsion ove®y ,. The latter is
impossible though, by our assumptions and Remark 2.8:a% < n. Thus, by injectivity
of A, m =0, whence

Tors (F/M, N) =
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The rigidity of Tor® (Proposition 2.4) now implies that
Tor' 1(F/M, N)=0
and hence
Tor (M, N)=0 foralli >1,

as required.
Finally, by the flat dimension formula (Proposition 2.5) and torsion freeneSg of ¢
(see Remark 2.6), we obtain

n—1> fd((’)x{n}f(n)) =fd(Oxe) + fd((/)x{n—l}’s(n—l)) =-.-=n-fd(Oxe).
Hence fdOx ¢) =0, so thatOy ¢ is Oy, -flat.
Case 4

Let fz: Xe — Y, be a morphism of germs of analytic spaces, wh@sg: is Cohen—
Macaulay andDy,, is regular of dimension. Then, by [8, Proposition 3.20} is flat if
and only if it is open. Hence, if there are atgebraic verticalcomponents irOx ) g,
the flatness off; follows from Theorem 1.5.

4. Fibrepowersand Gabrielov regularity

As pointed out in Remark 3.1, in general a fibre power of a Gabrielov regular mapping
need not be regular itself. This is possible even in the case of mappings between smooth
spaces, as shown in [2, Example 3.3].

It is interesting to know how to avoid such “hidden irregularity” phenomena. Ideally,
one would like to have a condition on a morphisfn: X¢ — Y,,, which would force all
fibre powersf;(’l.}} :Xél(,}) — Y, (i > 1) to behave regularly in the sense of Gabrielov on both
the isolated and embedded components. (Note that this is a stronger property than having
only dominating oralgebraic verticalcomponents in thxé’(f, fori > 1.) Such a criterion
would automatically yield Conjecture 1.3.

For the time being, we are only able to address this problem in the reduced case (Propo-
sition 4.2 below), although it seems plausible that one could resolve the general problem
along the lines of Propositions 4.1 and 4.2.

Let f¢:X: — Y, be a morphism of germs of analytic spaces, withirreducible of
dimensionn. Let Y be ann-dimensional irreducible representativelof, and letX be a
representative ak¢ such that the components &fare precisely the representativestin
of the components ok and f(X) C Y (where f represents the gerrfi). Furthermore
let

fod, f = dim, £ (£ (x))
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be thefibre dimensiorof f at a pointx.

In the remainder of this section we will use the following notation of [2}=
min{fbd, f: x € X}, k = max{fbd, f: x € X}, andA; = {x € X: fbd, f > j} for I <
Jj <k.We then haveX = A; D A;41 D --- D Ag, and by the Cartan—Remmert Theorem
(see [15]), thed; are analytic inX. DefineB; = f(A;) ={y e Y: dim f~1(y) > j} for
[ < j < k. The upper semi-continuity of fd (as a function ofc) implies that the germs
(Aj)e and(B;), are independent of the choices of representatives made above.

Note that, except foB (cf. proof of Proposition 4.1 below), thg; may not even be
semianalytic in general. Nonetheless, there is an interesting connection between the filtra-
tion of the target by fibre dimensidn> B; D B;+1 D --- D By and the isolated irreducible
components of the-fold fibre powerx ! that we describe below.

Proposition 4.1. Under the above assumptions, ket = Ui Wi be the decomposition
into finitely many isolated irreducible components throg§h. Then

(a) Foreachj =1, ..., k, there exist components;, 1. ..., W;, ,, of X"} such that

Pj
Bi=J r"™wi .

g=1

(b) If y € B; with dimf~Y(y) =s (s > j), Z is an irreducible component of the fibre
(f"H=1(y) of dimensiorms, and W is an irreducible component ot contain-
ing Z, then f"}(W) C B;.

Proof. Fix j > 14 1 (the statement is trivial fof =/ as B; = f(X)). Pick anyy € B;.
Then dimf~1(y) = s for somes > j. Let Z be an irreducible component of the fibre
(f"H~1(y) of dimensioms, and letW be an irreducible component &f"! containingZ.
We will show thatf " (W) c B;.

Suppose to the contrary thet N (X" \ (") ~1(B;)) # @, that is, suppose that there
existsz = (x1,...,x,) € Wsuchthatf (x;) e Y\B;fori=1,...,n. Thenfbd, f < j—1,

i =1,...,n, and hence fbdf" < n(j — 1) = nj — n. In particular, the generic fibre
dimension of /W is not greater thamj — n. Since rankf " |W) < dimY = n, then
dmW < (nj —n) +n=nj.

Now we haveW D Z, dimW < nj, dimZ = ns > nj, and bothW and Z irreducible.
This is only possible wheW = Z, and hencef "}(W) = f¥"(zZ) = {y} C B, a contra-
diction. Thereforef "} (W) c Bj, which completes the proof of part (b) of our proposition.

Part (a) follows immediately, since for anye B; and any irreducible componeftof
(f"H~1(y) of the highest dimension, there exists an isolated irreducible comp&inent
X" that containZ. O

We can now establish a criterion for an analytic morphism to be Gabrielov regular to-
gether with all of its fibre powers:
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Proposition 4.2. Let f:: X: — Y, be a morphism of germs of analytic spaces, with
irreducible of dimensiom. The following conditions are equivalent

() f{'} X{’} — Y, is Gabrielov regular for alli >
(i) aII the restrlctlonsf|A, are Gabrielov regular(] =1,...,k).

Proof. Suppose firstthat|A; (j =1, ..., k) are regular. Fix a positive integeand letW
be an isolated irreducible componentXf!. Since the components aft’! are precisely
the representatives of thoseXSf(,}.), it suffices to show thaf!}|W is regular.

Let ¢ be the greatest integer for which the generic fibre- Fy x --- x F; of flill|w
contains a componerft,, of dimensiong. Then £ (W) c B, = f(Ag). The property
of being a fibre of dimensiog is an open condition oM,. HenceW is induced by
an irreducible componerit of A, with the generic fibre dimension of|V equalg, in
the sense that there exists a comporiemtf A, such thatf}(W) = f(V). By assump-
tion, dim, f(V)= dim, f(V) (where closure is in the Zariski topology ¥), hence also
dim,, fi3(W) =dim, fBWw); i.e.,f{i}|W is Gabrielov regular.

Suppose now that there exisj& {I,...,k} for which f]A; is not regular. We shall
show that then regularity of&_ X{”} — Y, fails, wheren = dimY.

Fix j €{l,...,k} such thatf|A] is not regular. Picky € B; with dim f~ Ty =,
and letZ be an |solated irreducible component of the fibyé" ) L(y) of dimensionn;.
Let W be an isolated irreducible componentXf* containingZ. Then f"}(w) c B;,
by Proposition 4.1(b). Moreover:!”!|W has no fibres of dimension less than or equal
to n(j — 1). Indeed, otherwise the generic fibre dimension/&f |W would be at most
n(j — 1), sothat dinW <n(j — 1) + n =nj =dimZ, and hencéV = Z, a contradiction
(see the proof of Proposition 4.1). Thus, the generic fibre Fy x --- x F, of fitw
contains a componelf,, of dimension;.

Now, there is an isolated irreducible componéntof A; such that dim f(V) >
dim, f(V) and the generic fibre dimension ¢fV is j. Oury € B; can then be chosen
from f(V), andZ a component of(f|V)~1(y))". Since being g-dimensional fibre is an
open condition o ;, then (as in the first part of the proof) we find that! (W) = £(V),

so that diny £t/ (W) > dim, £ (W). ThUSfE”} x! "l v, is not regular. O
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