List of known typos and errors in OpenStax Calculus II Answer Key

as of Jan.7, 2023

- 3.2,#83: Not a mistake! Just weird looking.
- 3.2,#85: Wrong answer. Should be $\frac{2}{3}(\sin x)^{3/2} + C$.
- 3.2,#123: Typo. There should be no x after $\sqrt{\tan x}$ in the answer.
- 3.3,#153: Asks for a definite integral, but gives indefinite instead. At least a correct one.
- 3.3,#163: Wrong answer. Should be $\arcsin(\frac{x-5}{5}) + C$.
- 3.3,#167: Not a mistake. The functions $-\arccos x$ and $\arcsin x$ differ by a constant.
- 3.4,#197: Typo. Should be $2\ln|x+4| + \ln|x-2| + C$.
- 3.5,#281: Typo. Should be $\ln(e^x + \sqrt{e^{2x} 4})$.
- 3.7, Ex.3.50: Wrong answer. Should be $\pi/4$.
- 4.1,#63: Wrong answer. Should be $y = 3 2t + t^2$.
- 4.3,#121: Typo.
- 4.3,#139: Error in the problem: x(0) makes no sense, as no solution is defined at t = 0.
- 4.5,#219: Wrong answer. Should be e^{e^x} .
- 4.5,#241: Wrong answer. Should be $y = x + \frac{4}{e^x} 1$.
- 5.1,#7: Wrong answer. Should be 1 4n.
- 5.1,#9: Typo. Should be $3 \cdot 10^{1-n}$.
- 5.2, Ex.5.9: Typo. Should be a = 9, and not a = -3.
- 5.6,#327: Typo. Should be $\frac{a_{n+1}}{a_n}$.
- 6.4,#185: Wrong answer. Should be 3^{1-2n} .
- 6.4,#215: The problem makes no sense! F has no Maclaurin series, since $F^{(3)}(x)$ has no limit as $x \to 0$.
- 6.4, #259: Wrong interval. Should be (-12, 12).
- 6 Review, #261: Wrong answer. Should be x^{n+2} .
- 7.1,#5: Wrong answer. The y-intercept should be at 1.
- 7.1,#21: Typo. Should be $x \in [-1, \infty)$, and not $x \in [1, \infty)$.
- 7.1,#23: Typo in the statement. Should be θ and not t.
- 7.1,#29: Wrong answer. Should be $x \in (-\infty, -1] \cup [1, \infty)$.

- 7.1,#31: Wrong interval. Should be $x \in [-1, 1]$.
- 7.1,#33: Wrong interval. Should be $[1,\infty)$.
- 7.1,#35: Wrong interval. Should be $[1, \infty)$.
- 7.2,#75: Wrong answer. Should be $y = -\frac{4}{e}x + 5$.
- 7.2,#77: Wrong answer. Should be y = -2x + 3.
- 7.3,#159: Typo. Should be $r^2 = 16 \sec(2\theta)$.
- 7.4,#243: Wrong answer. The slope is $\frac{4+\pi}{4-\pi}$.