Problem Set 2

January 23, 2023
due: February 4, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

1. Exercise 2.23.
2. Prove that the following equivalences hold for arbitrary sets A, B and C.
(a) $(A \subset B) \Longleftrightarrow[B=A \cup(B \backslash A)]$.
(b) $(A \subset B) \Longleftrightarrow\{(B \subset C) \Rightarrow[(C \backslash A) \cap(C \backslash B)=C \backslash B]\}$.
3. Let A be a nonempty set. A relation R on a A is called an equivalence relation, when it satisfies the following axioms:
(ER1) $\forall a \in A, a R a$
(ER2) $\forall a, b \in A, a R b \Rightarrow b R a \quad$ (reflexivity)
(ER3) $\forall a, b, c \in A,(a R b \wedge b R c) \Rightarrow a R c \quad$ (symmetry)
Given an equivalence relation R on A, one defines an equivalence class of an element $a \in A$ as

$$
[a]_{R}=\{b \in A: b R a\}
$$

For an equivalence class $E \subset A$ (with respect to R), an element $a \in A$ is called a representative of E, when $a \in E$.
(a) Prove that, for all $a, b \in A$, either $[a]_{R}=[b]_{R}$ or else $[a]_{R} \cap[b]_{R}=\varnothing$.
(b) Prove that if E is an equivalence class with respect to R then, for all $a \in A, a \in E \Rightarrow E=[a]_{R}$.
(c) Let $\Delta_{A}:=\{(a, a): a \in A\}$. Prove that every equivalence relation S on A satisfies $\Delta_{A} \subset S$.
(d) Let \mathcal{F} be a nonempty set of equivalence relations on A. Prove that $\bigcap_{S \in \mathcal{F}} S$ is an equivalence relation on A.
(e) Let \mathcal{E} denote the set of all equivalence relations on A. Prove that $\Delta_{A}=\bigcap_{S \in \mathcal{E}} S$. [See Problem 10 below for notation.]
4. Construction of \mathbb{Z} : Let $\mathbb{N}=\{0,1,2,3, \ldots\}$ be the set of natural numbers. Define a relation R on $\mathbb{N} \times \mathbb{N}$ by

$$
(a, b) R(c, d): \Longleftrightarrow a+d=c+b .
$$

(a) Use only the laws of commutativity $(a+b=b+a)$, associativity $(a+(b+c)=(a+b)+c)$ and cancellation $(a+c=b+c \Rightarrow a=b)$ of addition on \mathbb{N} to prove that R is an equivalence relation on $\mathbb{N} \times \mathbb{N}$.
(b) Denote by \mathbb{Z} the set of equivalence classes $\left\{[(a, b)]_{R}: a, b \in \mathbb{N}\right\}$. Define the operations of addition and subtraction in \mathbb{Z} by

$$
[(a, b)]_{R}+_{\mathbb{Z}}[(c, d)]_{R}:=[(a+c, b+d)]_{R}, \quad[(a, b)]_{R}-_{\mathbb{Z}}[(c, d)]_{R}:=[(a+d, c+b)]_{R}
$$

Prove that these operation are well-defined, that is, independent of the choices of representatives of the equivalence classes.
(c) Prove that, for all $a, b, c, d, e, f \in \mathbb{N}$,

$$
[(a, b)]_{R}-_{\mathbb{Z}}[(c, d)]_{R}=[(e, f)]_{R} \Longleftrightarrow[(a, b)]_{R}=[(c, d)]_{R}+\mathbb{Z}[(e, f)]_{R}
$$

(d) Prove that the functions $\varphi: \mathbb{N} \rightarrow \mathbb{Z}$ and $\psi: \mathbb{N} \rightarrow \mathbb{Z}$ defined as $\varphi(n)=[(n, 0)]_{R}, \psi(n)=[(0, n)]_{R}$ are injective, $\mathbb{Z}=\varphi(\mathbb{N}) \cup \psi(\mathbb{N})$, and $\varphi(\mathbb{N}) \cap \psi(\mathbb{N})=\left\{[(0,0)]_{R}\right\}$.
(e) Prove that, for all $m, n \in \mathbb{N}, \varphi(m)+_{\mathbb{Z}} \varphi(n)=\varphi(m+n), \psi(m)+_{\mathbb{Z}} \psi(n)=\psi(m+n)$, and $\varphi(n)+_{\mathbb{Z}} \psi(n)=$ $[(0,0)]_{R}$.

From now on, we shall identify the set \mathbb{N} with the $\operatorname{subset} \varphi(\mathbb{N})$ of \mathbb{Z}, and write n for $\varphi(n)$ in \mathbb{Z}. We shall also write $-n$ for $\psi(n)$.
5. Let $f: X \rightarrow Y$ be a function.
(a) Prove that, if $A=f^{-1}(f(A))$ for all $A \subset X$, then f is injective.
(b) Prove that, if $f\left(f^{-1}(E)\right)=E$ for all $E \subset Y$, then f is surjective.
(c) Prove that, if $f(A \cap B)=f(A) \cap f(B)$ for all $A, B \subset X$, then f is injective.

Practice Problems (not to be submitted):

6. Complete the proofs of all the theorems stated in class last week (cf. Part I of the Lecture Notes).
7. Let A, B and C be subsets of a universal set U. Define the symmetric difference of A and B by

$$
A \Delta B:=(A \backslash B) \cup(B \backslash A)
$$

(a) Draw a Venn diagram for $A \Delta B$.
(b) What is $A \Delta A$?
(c) What is $A \Delta \varnothing$?
(d) What is $A \Delta U$?
(e) Prove that $A \Delta(B \Delta C)=(A \Delta B) \Delta C$.
(f) Exercise 2.22.
8. Let A, B, C and D be subsets of a universal set U. For each of the following, prove the equality of sets or give a counterexample. [Hint: It might be helpful to draw Venn diagrams first.]
(a) $(A \backslash B) \cup C=[(A \cup C) \backslash B] \cup(B \cap C)$.
(b) $A \cup(B \backslash C)=[(A \cup B) \backslash C] \cup(A \cap C)$.
(c) $(A \backslash B) \cap(C \backslash D)=(A \cap C) \backslash(B \cap D)$.
(d) $A \backslash(B \cup C)=(A \backslash B) \backslash C$.
(e) $(A \cup B \cup C) \backslash(A \cup B)=C$.
(f) $A \backslash[B \backslash(C \backslash D)]=(A \backslash B) \cup[(A \cap C) \backslash D]$.
(g) $A \cup B \cup C \cup D=(A \backslash B) \cup(B \backslash C) \cup(C \backslash D) \cup(D \backslash A) \cup(A \cap B \cap C \cap D)$.
9. Let \mathcal{B} be a nonempty set of sets. One defines

$$
\bigcup \mathcal{B}=\bigcup_{B \in \mathcal{B}} B:=\{x: \exists B \in \mathcal{B} \text { s.t. } x \in B\} \quad \text { and } \quad \bigcap \mathcal{B}=\bigcap_{B \in \mathcal{B}} B:=\{x: \forall B \in \mathcal{B}, x \in B\} .
$$

Let A be a set and let \mathcal{B} be a nonempty set of sets. Prove the following distributive and de Morgan laws:
(a) $A \cup\left(\bigcap_{B \in \mathcal{B}} B\right)=\bigcap_{B \in \mathcal{B}}(A \cup B)$
(b) $A \cap\left(\bigcup_{B \in \mathcal{B}} B\right)=\bigcup_{B \in \mathcal{B}}(A \cap B)$
(c) $A \backslash\left(\bigcup_{B \in \mathcal{B}} B\right)=\bigcap_{B \in \mathcal{B}}(A \backslash B)$
(d) $A \backslash\left(\bigcap_{B \in \mathcal{B}} B\right)=\bigcup_{B \in \mathcal{B}}(A \backslash B)$.
10. Construction of \mathbb{N} : Define the set \mathbb{N} recursively by assuming that $\varnothing \in \mathbb{N}$, and for every $n \in \mathbb{N}, n \cup\{n\} \in \mathbb{N}$. Thus, \mathbb{N} contains the elements $\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$, etc. For an element $n \in \mathbb{N}$, denote by $n+1$ the element $n \cup\{n\}$ of \mathbb{N}. Prove that the inclusion " \subseteq " defines a linear order relation on \mathbb{N}, with respect to which $n<n+1$ for all $n \in \mathbb{N}$.
11. Let X be a nonempty set. Prove or give a counterexample for each of the following:
(a) If R and S are transitive relations on X, then so is $R \cap S$.
(b) If R and S are transitive relations on X, then so is $R \cup S$.
(c) If \mathcal{F} is a nonempty family of equivalence relations on X, then $\bigcap_{R \in \mathcal{F}} R$ is an equivalence relation on X.
12. A relation R on a nonempty set A is called antisymmetric if, for all $a, b \in A$,

$$
[a R b \wedge b R a] \Longrightarrow a=b
$$

(a) Give an example of an antisymmetric equivalence relation on \mathbb{R}.
(b) Can you give any other? If so go ahead, otherwise explain why not.
(c) Prove or give a counterexample: For every nonempty set A, there is precisely one antisymmetric equivalence relation on A.
13. (a) Give an example of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that f and $g \circ f$ are both injective, but g is not injective.
(b) Give an example of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that g and $g \circ f$ are both surjective, but f is not surjective.
14. Let $f: X \rightarrow X$ be a function. Define $f^{0}:=\operatorname{id}_{X}$ and $f^{k+1}:=f \circ f^{k}$ for all $k \in \mathbb{N}$. Prove the following statement:

$$
\left(\exists n \geq 1 \text { such that } f^{n} \text { is bijective }\right) \Longrightarrow f \text { is bijective. }
$$

15. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are functions such that $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\operatorname{id}_{X}$. Prove that f and g are bijective and are the inverses of one another, that is, $f^{-1}=g$ and $g^{-1}=f$.
16. Prove that every function $f: X \rightarrow Y$ can be written as a composite $f=h \circ g$, where g is a surjection and h is an injection. [Hint: Consider a relation R on X given by $x_{1} R x_{2}$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$. Show that R is an equivalence relation. Let \mathcal{E} be the set of equivalence classes in X relative to R. Define g to be an appropriate surjection from X to \mathcal{E}.]
