Problem Set 3

February 6, 2023
due: February 27, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

1. A real number is said to be algebraic if it is a root of a polynomial equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

with integer coefficients a_{0}, \ldots, a_{n} (for some $n \in \mathbb{N}$), where $a_{0} \neq 0$.
(a) Prove that the set of polynomials with integer coefficients is countable.
(b) Prove that the set of algebraic numbers is countable.
2. Let $P(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be a polynomial of degree $n \in \mathbb{Z}_{+}$, with $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(a) Prove that, if z is a root of P (i.e., $P(z)=0$) then $\left|z^{n}\right|=\left|a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}\right|$.
(b) Prove that, if z is a root of P then

$$
|z| \leq 2 \cdot \max \left\{\sqrt[d]{\left|a_{d}\right|}: 1 \leq d \leq n\right\}
$$

[Hint: Try a proof by contradiction, using part (a).]
3. Define the following operations of addition and multiplication on $\mathbb{R} \times \mathbb{R}$

$$
(x, y)+(u, v):=(x+u, y+v), \quad(x, y) \cdot(u, v):=(x u-y v, x v+u y) .
$$

(a) Verify that $\mathbb{R} \times \mathbb{R}$ with so-defined addition and multiplication satisfies the axioms of a field.
(b) Identify the multiplicative identity 1 and its additive inverse -1 . Show that there exists an element $\left(x_{0}, y_{0}\right) \in$ $\mathbb{R} \times \mathbb{R}$ with $\left(x_{0}, y_{0}\right) \cdot\left(x_{0}, y_{0}\right)=-1$.
(c) Prove that there exists an injection $\varphi: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ such that the field structure of \mathbb{R} is induced (via φ) by that of $\mathbb{R} \times \mathbb{R}$. That is, find an injection $\varphi: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ such that, for all $x, y \in \mathbb{R}, \varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$ (where the addition and multiplication on the right is that in $\mathbb{R} \times \mathbb{R}$).
(d) Fix an injective $\varphi: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ with the above properties. Use the fact that, in \mathbb{R}, we have $x^{2}>0$ for every $x \neq 0$, to prove that there is no real number s such that $\varphi(s)=\left(x_{0}, y_{0}\right)$ (where $\left(x_{0}, y_{0}\right)$ is the element from part (b)).
4. (a) Prove that in any ordered field $(\mathbb{F},+, \cdot, \prec)$, we have $0 \prec a^{2}+1$ for all $a \in \mathbb{F}$.
(b) Use part (a) to prove that, if $(\mathbb{F},+, \cdot)$ is a field in which the equation $x^{2}+1=0$ has a solution, then the field \mathbb{F} cannot be ordered (i.e., there exists no ordering " \prec " on \mathbb{F} that would satisfy axioms $O 1-O 4$). Conclude that the field $\mathbb{R} \times \mathbb{R}$ from Problem 3 cannot be ordered.
5. Let S be a nonempty bounded subset of \mathbb{R} and let $a \in \mathbb{R}$. Define $a S:=\{a \cdot x: x \in S\}$. Prove that, if $a<0$, then $\sup (a S)=a \cdot \inf S$ and $\inf (a S)=a \cdot \sup S$.
6. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a function such that, for all $x>0, f(x)=\sup \{f(z): z \in[0, x)\}$. Prove that f is increasing (i.e., for all x and y from $[0,+\infty$), if $x \leq y$ then $f(x) \leq f(y)$).

Practice Problems (not to be submitted):

7. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a function such that, for all $x>0$,

$$
\sup \{f(z): z \in[0, x)\}=f(x)=\inf \{f(y): y \in(x,+\infty)\}
$$

Prove that $f([0,+\infty))$ is an interval (i.e., if real numbers u and w are both contained in $f([0,+\infty))$ and $u<w$, then $v \in f([0,+\infty))$ for every $v \in(u, w))$, by following these steps: For a proof by contradiction, suppose that there are $u, v, w \in \mathbb{R}$ such that $u<v<w, u, w \in f([0,+\infty))$ and $v \notin f([0,+\infty))$.
(a) Let then x_{u} and x_{w} be such that $f\left(x_{u}\right)=u$ and $f\left(x_{w}\right)=w$. Show that $x_{u}<x_{w}$.
(b) Define sets $A:=\left\{x \in\left[x_{u}, x_{w}\right]: f(x)<v\right\}$ and $B:=\left\{x \in\left[x_{u}, x_{w}\right]: f(x)>v\right\}$. Show that A and B are nonempty and bounded. Let $\alpha:=\sup A$ and $\beta:=\inf B$. Prove that $\alpha=\beta$.
(c) Prove that $f(\alpha)=\inf f(B)$.
(d) Prove that $f(\alpha)=v$, thus contradicting the hypothesis that $v \notin f([0,+\infty))$.
8. Exercise 4.6.
9. Exercise 4.8.
10. Exercise 4.9.
11. Exercise 4.10.
12. Exercise 4.12.
13. Exercise 4.13.
14. Exercise 4.16 .
15. Exercise 4.20 .
16. Exercise 4.25 .

