Problem Set 4

February 27, 2023
due: March 13, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_{1}=\sqrt{2}$, and $a_{n+1}=\sqrt{2+a_{n}}$, for all $n \geq 1$. Prove that the sequence converges and find its limit.
2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence, and let S denote the set of all subsequential limits of $\left(a_{n}\right)_{n=1}^{\infty}$, that is, all real numbers s such that there exists a subsequence $\left(a_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(a_{n}\right)_{n=1}^{\infty}$ with $\lim _{k \rightarrow \infty} a_{n_{k}}=s$. One defines limit superior of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted $\limsup a_{n}$, as sup S, and limit inferior of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted liminf a_{n}, as $\inf S$. Prove the following:
(a) $\lim \sup a_{n}=\lim _{N \rightarrow \infty} \sup \left\{a_{n}: n \geq N\right\}$
(b) $\lim \inf a_{n}=\lim _{N \rightarrow \infty} \inf \left\{a_{n}: n \geq N\right\}$
(c) For every $s_{0} \in \mathbb{R}$, if there exists a sequence $\left(s_{k}\right)_{k=1}^{\infty}$ with values in S, such that $\lim _{k \rightarrow \infty} s_{k}=s_{0}$, then $s_{0} \in S$.
3. Construction of \mathbb{R} : Let \mathbb{Q} denote the ordered field of of rational numbers, and let \mathcal{C} be the set of all Cauchy sequences with values in \mathbb{Q}. More precisely, $\left(a_{n}\right)_{n=1}^{\infty} \in \mathcal{C}$ iff $a_{n} \in \mathbb{Q}$ for all $n \in \mathbb{Z}_{+}$, and

$$
\forall \varepsilon \in \mathbb{Q}, \varepsilon>0 \exists N \in \mathbb{N} \forall m, n \geq N,-\varepsilon<a_{m}-a_{n}<\varepsilon
$$

(a) Define a relation R on \mathcal{C} by setting $\left(a_{n}\right) R\left(b_{n}\right)$ iff $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$. Prove that R is an equivalence relation on \mathcal{C}.
(b) Let \mathbb{R} denote the set of equivalence classes in \mathcal{C} modulo R. Define

$$
\left[\left(a_{n}\right)\right]+\left[\left(b_{n}\right)\right]:=\left[\left(a_{n}+b_{n}\right)\right], \quad\left[\left(a_{n}\right)\right] \cdot\left[\left(b_{n}\right)\right]:=\left[\left(a_{n} b_{n}\right)\right]
$$

for any $\left[\left(a_{n}\right)\right],\left[\left(b_{n}\right)\right] \in \mathbb{R}$. Prove that the above operations of addition and multiplication are well defined (i.e., independent of the choices of representatives of equivalence classes).
(c) Let $\varphi: \mathbb{Q} \rightarrow \mathbb{R}$ be defined as $\varphi(q)=[(q)]$, where (q) denotes the constant sequence with all terms equal to q. Prove that φ is an injection, which preserves the field operations (i.e., $\varphi\left(q_{1}+q_{2}\right)=\varphi\left(q_{1}\right)+\varphi\left(q_{2}\right)$ and $\varphi\left(q_{1} q_{2}\right)=\varphi\left(q_{1}\right) \cdot \varphi\left(q_{2}\right)$ for all $\left.q_{1}, q_{2} \in \mathbb{Q}.\right)$
(d) For $\left[\left(a_{n}\right)\right],\left[\left(b_{n}\right)\right] \in \mathbb{R}$, we say that $\left[\left(a_{n}\right)\right]<\left[\left(b_{n}\right)\right] \operatorname{iff} \neg\left(\left[\left(a_{n}\right)\right]=\left[\left(b_{n}\right)\right]\right)$ and there exists $N \in \mathbb{Z}_{+}$such that $a_{n}<b_{n}$ for all $n \geq N$. Prove that \mathbb{R} with so-defined addition, multiplication, and ordering satisfies the axioms of ordered field, in which $0=[(0)]$ and $1=[(1)]$. Show that $q_{1}<q_{2} \Leftrightarrow \varphi\left(q_{1}\right)<\varphi\left(q_{2}\right)$ for any $q_{1}, q_{2} \in \mathbb{Q}$ (whence \mathbb{R} contains \mathbb{Q} as an ordered subfield).
(e) Prove that \mathbb{Q} is everywhere dense in \mathbb{R}, that is, show that for all $\left[\left(a_{n}\right)\right],\left[\left(b_{n}\right)\right] \in \mathbb{R}$, if $\left[\left(a_{n}\right)\right]<\left[\left(b_{n}\right)\right]$ then there exists $q \in \mathbb{Q}$ such that $\left[\left(a_{n}\right)\right]<[(q)]<\left[\left(b_{n}\right)\right]$, in the above sense.
(f) Bonus: Prove that so-constructed \mathbb{R} is complete. That is, prove that for every non-empty bounded above set $X \subset \mathbb{R}$, there exists $\left[\left(c_{n}\right)\right] \in \mathbb{R}$ such that

$$
\forall\left[\left(a_{n}\right)\right] \in X, \quad\left[\left(a_{n}\right)\right]<\left[\left(c_{n}\right)\right]
$$

and

$$
\forall\left[\left(b_{n}\right)\right] \in \mathbb{R} \backslash\left\{\left[\left(c_{n}\right)\right]\right\}, \quad\left(\forall\left[\left(a_{n}\right)\right] \in X,\left[\left(a_{n}\right)\right]<\left[\left(b_{n}\right)\right]\right) \Longrightarrow\left[\left(c_{n}\right)\right]<\left[\left(b_{n}\right)\right]
$$

Practice Problems (not to be submitted):

4. Prove that, if $P(x)$ and $Q(x)$ are polynomials of positive degrees, then the sequence $a_{n}=\sqrt[n]{\left|\frac{P(n)}{Q(n)}\right|}$ converges to 1. [Hint: You may apply the Algebraic Limit Theorem and Squeeze Theorem, as well as other results proved in class, as needed.]
5. Exercise 5.17.
6. Exercise 5.18.
7. Exercise 6.8.
8. Exercise 6.11.
9. Exercise 6.13.
10. Exercise 6.19.
11. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_{1}=2$, and $a_{n+1}=2-\frac{1}{a_{n}}$, for all $n \geq 1$. Prove that the sequence converges and find its limit.
12. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2 \cdot a_{n}}$, for all $n \geq 1$. Prove that the sequence converges and find its limit.
13. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a bounded sequence, and suppose that $\lim \inf a_{n}=\lim \sup a_{n}$. Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=\liminf a_{n}$.
14. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two bounded sequences.
(a) Prove that $\lim \inf a_{n}+\liminf b_{n} \leq \liminf \left(a_{n}+b_{n}\right) \leq \limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}$.
(b) Give an example of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ for which the leftmost inequality in part (a) is strict.
(c) Give an example of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ for which the rightmost inequality in part (a) is strict.
