Problem Set 5

March 13, 2023
due: March 27, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

1. For a set $A \subset \mathbb{R}$, the closure of A, denoted, \bar{A}, is defined as the intersection of all closed sets in \mathbb{R} containing A. The interior of A, denoted $\operatorname{Int}(A)$, is defined as the union of all open sets in \mathbb{R} contained in A.
(a) Prove that \bar{A} is a closed set, for every $A \subset \mathbb{R}$.
(b) Prove that \bar{A} is the smallest closed set containing A; i.e., if $E \subset \mathbb{R}$ is closed and $A \subset E$, then $\bar{A} \subset E$.
(c) Prove that $\operatorname{Int}(A)$ is an open set, for every $A \subset \mathbb{R}$.
(d) Prove that $\operatorname{Int}(A)$ is the largest open set contained in A.
2. (a) Prove that $x \in \bar{A}$ iff there is a sequence $\left(a_{n}\right)$ in A convergent to x.
(b) A set $A \subset \mathbb{R}$ is called dense (in \mathbb{R}), when $A \cap U \neq \varnothing$ for every non-empty open set $U \subset \mathbb{R}$. Prove that A is dense in \mathbb{R} iff $\bar{A}=\mathbb{R}$.
3. (a) Show that $\overline{\mathbb{R} \backslash A}=\mathbb{R} \backslash \operatorname{Int}(A)$, and $\operatorname{Int}(\mathbb{R} \backslash A)=\mathbb{R} \backslash \bar{A}$.
(b) Is $\operatorname{Int}(A \cup B)=\operatorname{Int}(A) \cup \operatorname{Int}(B)$ for all $A, B \subset \mathbb{R}$? How about $\operatorname{Int}(A \cap B)=\operatorname{Int}(A) \cap \operatorname{Int}(B)$?
(c) Is $\overline{A \cup B}=\bar{A} \cup \bar{B}$ for all $A, B \subset \mathbb{R}$? How about $\overline{A \cap B}=\bar{A} \cap \bar{B}$?
4. Prove that, for every non-empty compact set $K \subset \mathbb{R}$, inf $K \in K$ and $\sup K \in K$.
5. We say that a set $B \subset A$ is an open subset of A, when there exists an open set U in \mathbb{R} such that $B=A \cap U$. We say that B is a closed subset of A, when there exists a closed set F in \mathbb{R} such that $B=A \cap F$.
(a) Let $f: A \rightarrow \mathbb{R}$ be a function. Prove that f is continuous iff $f^{-1}(V)$ is an open subset of A for every open set V in \mathbb{R}.
(b) Let $f: A \rightarrow \mathbb{R}$ be a function. Prove that f is continuous iff $f^{-1}(G)$ is a closed subset of A for every closed set G in \mathbb{R}.

Practice Problems (not to be submitted):

6. Prove that the intersection of a compact set and a closed set is a compact set.
7. Let $A, B \subset \mathbb{R}$, and let $f: A \rightarrow B$ be a continuous bijection. Prove that, if A is compact, then $f^{-1}: B \rightarrow A$ is also continuous. [Hint: Use Problems 5 and 6.]
8. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions.
(a) Prove that the set $f^{-1}(0)=\{x \in \mathbb{R}: f(x)=0\}$ is closed.
(b) Prove that the set $\{x \in \mathbb{R}: f(x)=g(x)\}$ is closed.
9. Let D be a dense subset of \mathbb{R}, and let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Prove that, if $f(x)=g(x)$ for all $x \in D$, then $f=g$.
10. Using the $\varepsilon-\delta$ definition of the functional limit, prove that $\lim _{x \rightarrow 1}\left(x^{3}-1\right)=0$.
11. Let $f:(-\infty, a) \rightarrow \mathbb{R}$ for some $a \in \mathbb{R}$. We say that L is the limit of f at $-\infty$, and write $\lim _{x \rightarrow-\infty} f(x)=L$, when

$$
\forall \varepsilon>0 \exists \delta<a \forall x \in(-\infty, \delta),|f(x)-L|<\varepsilon
$$

Similarly, for $f:(a, \infty) \rightarrow \mathbb{R}$, we say that $\lim _{x \rightarrow \infty} f(x)=L$, when

$$
\forall \varepsilon>0 \exists \delta>a \forall x \in(\delta, \infty),|f(x)-L|<\varepsilon
$$

State and prove analogues of the Algebraic Limit Theorem (for functions) for limits at $-\infty$ and ∞.
12. Exercise 10.64.
13. Exercise 10.66 .
14. (a) Fix $a \in \mathbb{R}$, and define $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x)=|x-a|$. Prove that f is continuous at every $c \in \mathbb{R}$.
(b) Let K be a non-empty compact subset of \mathbb{R}, and let $a \in \mathbb{R}$. Prove that K has a closest point to a, that is, prove that there exists $x_{0} \in K$ such that $\left|x_{0}-a\right| \leq|x-a|$ for all $x \in K$.

