Problem Set 5 March 13, 2023

due: March 27, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

- **1.** For a set $A \subset \mathbb{R}$, the *closure* of A, denoted, \overline{A} , is defined as the intersection of all closed sets in \mathbb{R} containing A. The *interior* of A, denoted Int(A), is defined as the union of all open sets in \mathbb{R} contained in A.
 - (a) Prove that \overline{A} is a closed set, for every $A \subset \mathbb{R}$.
 - (b) Prove that \overline{A} is the smallest closed set containing A; i.e., if $E \subset \mathbb{R}$ is closed and $A \subset E$, then $\overline{A} \subset E$.
 - (c) Prove that Int(A) is an open set, for every $A \subset \mathbb{R}$.
 - (d) Prove that Int(A) is the largest open set contained in A.
- **2.** (a) Prove that $x \in \overline{A}$ iff there is a sequence (a_n) in A convergent to x.
 - (b) A set $A \subset \mathbb{R}$ is called *dense* (in \mathbb{R}), when $A \cap U \neq \emptyset$ for every non-empty open set $U \subset \mathbb{R}$. Prove that A is dense in \mathbb{R} iff $\overline{A} = \mathbb{R}$.
- **3.** (a) Show that $\overline{\mathbb{R} \setminus A} = \mathbb{R} \setminus \operatorname{Int}(A)$, and $\operatorname{Int}(\mathbb{R} \setminus A) = \mathbb{R} \setminus \overline{A}$.
 - (b) Is $\operatorname{Int}(A \cup B) = \operatorname{Int}(A) \cup \operatorname{Int}(B)$ for all $A, B \subset \mathbb{R}$? How about $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$?
 - (c) Is $\overline{A \cup B} = \overline{A} \cup \overline{B}$ for all $A, B \subset \mathbb{R}$? How about $\overline{A \cap B} = \overline{A} \cap \overline{B}$?
- **4.** Prove that, for every non-empty compact set $K \subset \mathbb{R}$, inf $K \in K$ and sup $K \in K$.
- **5.** We say that a set $B \subset A$ is an *open subset* of A, when there exists an open set U in \mathbb{R} such that $B = A \cap U$. We say that B is a *closed subset* of A, when there exists a closed set F in \mathbb{R} such that $B = A \cap F$.
 - (a) Let $f: A \to \mathbb{R}$ be a function. Prove that f is continuous iff $f^{-1}(V)$ is an open subset of A for every open set V in \mathbb{R} .
 - (b) Let $f: A \to \mathbb{R}$ be a function. Prove that f is continuous iff $f^{-1}(G)$ is a closed subset of A for every closed set G in \mathbb{R}

Practice Problems (not to be submitted):

- **6.** Prove that the intersection of a compact set and a closed set is a compact set.
- 7. Let $A, B \subset \mathbb{R}$, and let $f: A \to B$ be a continuous bijection. Prove that, if A is compact, then $f^{-1}: B \to A$ is also continuous. [Hint: Use Problems 5 and 6.]
- **8.** Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions.
 - (a) Prove that the set $f^{-1}(0) = \{x \in \mathbb{R} : f(x) = 0\}$ is closed.
 - (b) Prove that the set $\{x \in \mathbb{R} : f(x) = g(x)\}\$ is closed.
- **9.** Let D be a dense subset of \mathbb{R} , and let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions. Prove that, if f(x)=g(x) for all $x\in D$, then f=g.
- **10.** Using the $\varepsilon \delta$ definition of the functional limit, prove that $\lim_{x \to 1} (x^3 1) = 0$.

11. Let $f:(-\infty,a)\to\mathbb{R}$ for some $a\in\mathbb{R}$. We say that L is the limit of f at $-\infty$, and write $\lim_{x\to-\infty}f(x)=L$, when

$$\forall \varepsilon > 0 \ \exists \delta < a \ \forall x \in (-\infty, \delta), \ |f(x) - L| < \varepsilon.$$

Similarly, for $f:(a,\infty)\to\mathbb{R}$, we say that $\lim_{x\to\infty}f(x)=L$, when

$$\forall \varepsilon > 0 \ \exists \delta > a \ \forall x \in (\delta, \infty), \ |f(x) - L| < \varepsilon.$$

State and prove analogues of the Algebraic Limit Theorem (for functions) for limits at $-\infty$ and ∞ .

- **12.** Exercise 10.64.
- **13.** Exercise 10.66.
- **14.** (a) Fix $a \in \mathbb{R}$, and define $f : \mathbb{R} \to \mathbb{R}$ as f(x) = |x a|. Prove that f is continuous at every $c \in \mathbb{R}$.
 - (b) Let K be a non-empty compact subset of \mathbb{R} , and let $a \in \mathbb{R}$. Prove that K has a closest point to a, that is, prove that there exists $x_0 \in K$ such that $|x_0 a| \leq |x a|$ for all $x \in K$.