Problem Set 6

March 26, 2023
due: April 10, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.

1. Exercise 10.74 .
2. Define a sequence of polynomials $\left(P_{n}\right)_{n=0}^{\infty}$ recursively by setting $P_{0}(x)=0$, and

$$
P_{n+1}(x)=P_{n}(x)+\frac{1}{2}\left(x-P_{n}(x)^{2}\right), \quad n \in \mathbb{N} .
$$

Prove by induction that the sequence $\left(P_{n}\right)$ converges uniformly to the function \sqrt{x} on the interval $[0,1]$, by showing that, for all n,

$$
0 \leq \sqrt{x}-P_{n}(x) \leq \frac{2 \sqrt{x}}{2+n \sqrt{x}}
$$

whence $0 \leq \sqrt{x}-P_{n}(x) \leq 2 / n$ for all $x \in[0,1]$.
3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two uniformly continuous functions. Prove that the composite function $g \circ f$ is uniformly continuous.
4. Let $A \subset \mathbb{R}$ be a non-empty set.
(a) Let $f: A \rightarrow \mathbb{R}$ be a uniformly continuous function. Prove that, for every Cauchy sequence $\left(x_{n}\right) \subset A$, the sequence $\left(f\left(x_{n}\right)\right)$ is also Cauchy.
(b) Give an example of a continuous function $f: A \rightarrow \mathbb{R}$ and a Cauchy sequence $\left(x_{n}\right) \subset A$ such that $\left(f\left(x_{n}\right)\right)$ is not Cauchy. Justify.
5. Let $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$, for $x \geq 0, n \in \mathbb{N}$.
(a) Find the pointwise limit $f:[0, \infty) \rightarrow \mathbb{R}$ of the sequence $\left(f_{n}\right)$.
(b) Show that for any $t>0$, the sequence $\left(f_{n}\right)$ converges uniformly to f on the interval $[t, \infty)$.
(c) Show that the sequence $\left(f_{n}\right)$ does not converge uniformly on the interval $[0, \infty)$.

Practice Problems (not to be submitted):

6. Exercise 10.23 .
7. Exercise 10.25.
8. Exercise 10.26.
9. Exercise 10.53 .
10. Exercise 10.56 .
11. Exercise 10.73 .
