Practice Final Exam

March 28, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.
0. Practice problems from all Problem Sets and Practice Midterms, and unfinished proofs/exercises from lectures.

1. (a) State the Cantor-Bernstein Theorem.
(b) Use only Cantor-Bernstein Theorem to prove that the intervals $(0,1)$ and $(0,1]$ are equinumerous.
(c) Use only Cantor-Bernstein Theorem to prove that the sets $(0,2) \backslash\{1\}$ and $[0,1]$ are equinumerous.
2. (a) State the definition of an equivalence relation on a set A.
(b) Give an example of a reflexive relation on a set A, which is not an equivalence relation. Justify.
(c) Give an example of a symmetric relation on a set A, which is not an equivalence relation. Justify.
3. (a) State the definition of divergence to ∞ and to $-\infty$ (for a sequence of real numbers).
(b) Give an example of an unbounded sequence, which does not diverge to ∞ nor $-\infty$. Justify.
4. (a) State the definitions of supremum and infimum of a non-empty bounded set $A \subset \mathbb{R}$.
(b) Give an example of a bounded set A, for which $\inf (A) \notin A$ and $\sup (A) \in A$. Justify.
(c) Characterize the intervals $I \subset \mathbb{R}$ with the property that $\inf (I), \sup (I) \in I$. Justify.
(d) Give an example of bounded sets $A, B \subset \mathbb{R}$, such that $A \neq \varnothing \neq B, A \cap B=\varnothing$, $\inf (A)=\inf (B)$, and $\sup (A)=\sup (B)$. Justify. Could A and/or B be chosen finite? Justify.
5. (a) State the definition of continuity, uniform continuity, and the Lipschitz condition for a function $f: A \rightarrow \mathbb{R}$.
(b) State the definitions of pointwise and uniform convergence of a functional sequence $\left(f_{n}\right)$.
(c) State the definitions of pointwise, uniform, and absolute convergence of a functional series $\sum f_{n}$.
6. (a) State the most general versions of Extreme Value Theorem and Intermediate Value Theorem (for real-valued functions of real variable).
(b) State the Heine-Borel Theorem.
(c) State the Weierstrass M-Test.
7. For each of the theorems stated in Problem 6, remove one of the assumptions and give a counterexample to a theorem with that assumption missing. Justify. (E.g., give an example of a closed unbounded set, which does not satisfy the definition of a compact set.)
8. (a) State the definitions of (strictly) increasing/decreasing functions.
(b) State the definitions of $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$.
(c) Prove that a monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ can only have jump discontinuities (i.e., no other types of discontinuities).
9. (a) State the definition of uniform convergence of a sequence of functions $f_{n}: A \rightarrow \mathbb{R}$.
(b) Let $\left(f_{n}\right)$ be a sequence of functions on \mathbb{R}, uniformly convergent to a function $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose that, for each $n \in \mathbb{N}$, there exists $M_{n} \in \mathbb{R}$ with $f_{n}(x)>M_{n}$ for all $x \in \mathbb{R}$. Prove that there exists $M \in \mathbb{R}$ such that $f(x)>M$ for all $x \in \mathbb{R}$.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Use only definition of continuity and openness, to prove that the set $\{x \in \mathbb{R}: f(x)<0\}$ is open.
