Practice Midterm Test 1

January 30, 2023

All numbered exercises are from the textbook *Real Analysis, Foundations and Functions of One Variable*, by Laczkovich and Sos.

- **0.** Practice problems from Problem Sets 1 and 2.
- **1.** Let $X = \{f : [0,1] \to \mathbb{R}\}$ be the set of all real-valued functions on the closed interval [0,1]. Define a relation R on X by setting

$$fRg \Leftrightarrow f(1) = g(1)$$
.

- (a) Prove that R is an equivalence relation on X.
- (b) For a function $f \in X$, let $[f]_R$ denote the equivalence class of f with respect to R. Find the cardinality of the set $\{[f]_R : f \in X\}$ of all equivalence classes modulo R. Justify your answer.
- **2.** Prove that the Cartesian product $\mathbb{Q} \times (\mathbb{R} \setminus \mathbb{Q})$ is uncountable.
- **3.** Let X, Y be sets. Prove that $|X| \leq |Y|$ if and only if $|\mathcal{P}(X)| \leq |\mathcal{P}(Y)|$.
- 4. Show that the following pairs of sets $X, Y \subset \mathbb{R}$ are equinumerous by finding a specific bijection between the sets in each pair.
 - (a) X = [1, 2) and Y = (1, 2).
 - (b) X = [0, 1] and $Y = \mathbb{R}$.
- **5.** Let α and β be transfinite cardinals. Prove that
 - (a) For all $n \in \mathbb{N}$, $(n + \alpha = n + \beta) \Leftrightarrow \alpha = \beta$.
 - (b) For all $n \in \mathbb{N}$, $(n + \alpha = \aleph_0 + \beta) \Leftrightarrow \alpha = \beta$.
 - (c) $(\aleph_0 + \alpha = \aleph_0 + \beta) \Leftrightarrow \alpha = \beta.$
- 6. Exercise 8.2.
- 7. Exercise 8.4.
- 8. Exercise 8.7.
- **9.** Exercise 8.8.
- 10. Use only the Cantor-Bernstein theorem to prove that the following pairs of sets X, Y are equinumerous.

(a)
$$X = [0,1]$$
 and $Y = \bigcup_{k=1}^{\infty} \left(\frac{1}{k+1}, \frac{1}{k}\right)$.
(b) $X = \mathbb{R}$ and $Y = \mathbb{R} \setminus \mathbb{Q}$.

- **11.** (a) Prove that $\aleph_0 \cdot \aleph_0 = \aleph_0$.
 - (b) Prove that $\aleph_0 \cdot \mathfrak{c} = \mathfrak{c}$.
 - (c) Prove that $\mathbf{c} \cdot \mathbf{c} = \mathbf{c}$.