Practice Midterm Test 1

January 30, 2023

All numbered exercises are from the textbook Real Analysis, Foundations and Functions of One Variable, by Laczkovich and Sos.
0. Practice problems from Problem Sets 1 and 2 .

1. Let $X=\{f:[0,1] \rightarrow \mathbb{R}\}$ be the set of all real-valued functions on the closed interval $[0,1]$. Define a relation R on X by setting

$$
f R g \Leftrightarrow f(1)=g(1)
$$

(a) Prove that R is an equivalence relation on X.
(b) For a function $f \in X$, let $[f]_{R}$ denote the equivalence class of f with respect to R. Find the cardinality of the set $\left\{[f]_{R}: f \in X\right\}$ of all equivalence classes modulo R. Justify your answer.
2. Prove that the Cartesian product $\mathbb{Q} \times(\mathbb{R} \backslash \mathbb{Q})$ is uncountable.
3. Let X, Y be sets. Prove that $|X| \leq|Y|$ if and only if $|\mathcal{P}(X)| \leq|\mathcal{P}(Y)|$.
4. Show that the following pairs of sets $X, Y \subset \mathbb{R}$ are equinumerous by finding a specific bijection between the sets in each pair.
(a) $X=[1,2)$ and $Y=(1,2)$.
(b) $X=[0,1]$ and $Y=\mathbb{R}$.
5. Let α and β be transfinite cardinals. Prove that
(a) For all $n \in \mathbb{N},(n+\alpha=n+\beta) \Leftrightarrow \alpha=\beta$.
(b) For all $n \in \mathbb{N},\left(n+\alpha=\aleph_{0}+\beta\right) \Leftrightarrow \alpha=\beta$.
(c) $\left(\aleph_{0}+\alpha=\aleph_{0}+\beta\right) \Leftrightarrow \alpha=\beta$.
6. Exercise 8.2.
7. Exercise 8.4.
8. Exercise 8.7.
9. Exercise 8.8.
10. Use only the Cantor-Bernstein theorem to prove that the following pairs of sets X, Y are equinumerous.
(a) $X=[0,1]$ and $Y=\bigcup_{k=1}^{\infty}\left(\frac{1}{k+1}, \frac{1}{k}\right)$.
(b) $X=\mathbb{R}$ and $Y=\mathbb{R} \backslash \mathbb{Q}$.
11. (a) Prove that $\aleph_{0} \cdot \aleph_{0}=\aleph_{0}$.
(b) Prove that $\aleph_{0} \cdot \mathfrak{c}=\mathfrak{c}$.
(c) Prove that $\mathfrak{c} \cdot \mathfrak{c}=\mathfrak{c}$.

