Practice Midterm Test 2 March 5, 2023

All numbered exercises are from the textbook *Real Analysis, Foundations and Functions of One Variable*, by Laczkovich and Sos.

- 0. Practice problems from Problem Sets 3 and 4, and unfinished proofs/exercises from lectures.
- **1.** Let $(a_n)_{n=0}^{\infty}$ be a bounded sequence.
 - (a) Prove that, if $\limsup a_n < M$, then there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $a_n < M$.
 - (b) Prove that, if $\liminf a_n > m$, then there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $a_n > m$.

[Hint: Argue by contradiction.]

- 2. Give an example of a bounded sequence (a_n) , for which $\liminf a_n < \limsup a_n$. Find the $\liminf a_n$ and $\limsup a_n$ for your sequence. Justify.
- **3.** Give an example of a Cauchy sequence of rational numbers, which does not converge to a rational number. Justify.
- 4. Exercise 7.12. You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- 5. Exercise 7.13.
- **6.** Prove the following Ratio Test: Let $\sum_{n=0}^{\infty} a_n$ be a series with non-zero terms.
 - (a) If $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series converges absolutely.
 - (b) If $\liminf \left|\frac{a_{n+1}}{a_n}\right| > 1$, then the series diverges.

[Hint: Let $L = \limsup \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then choose $r \in \mathbb{R}$ such that L < r < 1. Then, by Problem 1, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_{n+1}| < r \cdot |a_n|$, and the geometric series $\sum_n r^n$ is convergent.]

- 7. (a) Give an example of a divergent series $\sum_{n} a_n$, with $\liminf \left| \frac{a_{n+1}}{a_n} \right| < \limsup \left| \frac{a_{n+1}}{a_n} \right|$, and $\limsup \left| \frac{a_{n+1}}{a_n} \right| = 1$. Justify.
 - (b) Give an example of a divergent series $\sum_{n} a_n$, with $\liminf \left| \frac{a_{n+1}}{a_n} \right| < \limsup \left| \frac{a_{n+1}}{a_n} \right|$, and $\liminf \left| \frac{a_{n+1}}{a_n} \right| = 1$. Justify.
- 8. Prove the following Root Test: Let $\sum_{n=0}^{\infty} a_n$ be a series with non-zero terms.
 - (a) If $\limsup \sqrt[n]{|a_n|} < 1$, then the series converges absolutely.
 - (b) If $\limsup \sqrt[n]{|a_n|} > 1$, then the series diverges.

[Hint: For part (b), prove first that the sequence (a_n) has infinitely many terms satisfying $a_n \ge 1$.]

- 9. (a) State the Monotone Convergence and Bolzano-Weierstrass Theorems.
 - (b) Give an example of a series $\sum_{n} a_n$ such that its sequence of partial sums (s_n) contains no convergent subsequence. Justify.
- 10. Determine whether each series converges conditionally, converges absolutely, or diverges. Justify.

(a) $\sum \frac{(-1)^n n^3}{2^n}$

- (b) $\sum \frac{(-1)^n 2^n}{n!}$ (c) $\sum \frac{(-1)^n}{\ln n}$ (d) $\sum \frac{\cos(n\pi)}{\sqrt{n}}$.
- 11. Let $\sum_{n} a_n$ and $\sum_{n} b_n$ be two series of positive terms, and suppose that the sequence (a_n/b_n) converges to a non-zero real number. Prove that $\sum_{n} a_n$ converges iff $\sum_{n} b_n$ converges.
- **12.** Let A and B be non-empty subsets of \mathbb{R} , bounded above, and such that for every $a \in A$ there exists $b \in B$ with $a \leq b$. Prove that $\sup A \leq \sup B$.
- **13.** Let $A \subset \mathbb{R}$ be non-empty and bounded below. Let B be the set of lower bounds of A. Show that B is bounded above. What is $\sup B$? Justify.