Problem Set 4 February 17, 2023 due: March 8, 2025

All numbered exercises are from the textbook *Real Analysis, Foundations and Functions of One Variable*, by Laczkovich and Sos.

- **1.** Let $(a_n)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_1 = \sqrt{2}$, and $a_{n+1} = \sqrt{2 + a_n}$, for all $n \ge 1$. Prove that the sequence converges and find its limit.
- 2. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence, and let S denote the set of all subsequential limits of $(a_n)_{n=1}^{\infty}$, that is, all real numbers s such that there exists a subsequence $(a_{n_k})_{k=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ with $\lim_{k\to\infty} a_{n_k} = s$. One defines limit superior of $(a_n)_{n=1}^{\infty}$, denoted $\limsup a_n$, as $\sup S$, and limit inferior of $(a_n)_{n=1}^{\infty}$, denoted $\limsup a_n$, as $\inf S$. Prove the following:
 - (a) $\limsup a_n = \lim_{N \to \infty} \sup\{a_n : n \ge N\}$
 - (b) $\liminf a_n = \lim_{N \to \infty} \inf \{a_n : n \ge N\}$
 - (c) For every $s_0 \in \mathbb{R}$, if there exists a sequence $(s_k)_{k=1}^{\infty}$ with values in S, such that $\lim_{k\to\infty} s_k = s_0$, then $s_0 \in S$.
- **3.** Construction of \mathbb{R} : Let \mathbb{Q} denote the ordered field of of rational numbers, and let \mathbb{C} be the set of all Cauchy sequences with values in \mathbb{Q} . More precisely, $(a_n)_{n=1}^{\infty} \in \mathbb{C}$ iff $a_n \in \mathbb{Q}$ for all $n \in \mathbb{Z}_+$, and

 $\forall \varepsilon \in \mathbb{Q}, \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall m, n \ge N, \; -\varepsilon < a_m - a_n < \varepsilon \, .$

- (a) Define a relation R on \mathcal{C} by setting $(a_n)R(b_n)$ iff $\lim_{n\to\infty}(a_n-b_n)=0$. Prove that R is an equivalence relation on \mathcal{C} .
- (b) Let \mathbb{R} denote the set of equivalence classes in \mathcal{C} modulo R. Define

$$[(a_n)] + [(b_n)] := [(a_n + b_n)], \qquad [(a_n)] \cdot [(b_n)] := [(a_n b_n)],$$

for any $[(a_n)], [(b_n)] \in \mathbb{R}$. Prove that the above operations of addition and multiplication are well defined (i.e., independent of the choices of representatives of equivalence classes).

- (c) Let $\varphi : \mathbb{Q} \to \mathbb{R}$ be defined as $\varphi(q) = [(\underline{q})]$, where (\underline{q}) denotes the constant sequence with all terms equal to q. Prove that φ is an injection, which preserves the field operations (i.e., $\varphi(q_1 + q_2) = \varphi(q_1) + \varphi(q_2)$ and $\varphi(q_1q_2) = \varphi(q_1) \cdot \varphi(q_2)$ for all $q_1, q_2 \in \mathbb{Q}$.)
- (d) For $[(a_n)], [(b_n)] \in \mathbb{R}$, we say that $[(a_n)] < [(b_n)]$ iff $\neg([(a_n)] = [(b_n)])$ and there exists $N \in \mathbb{Z}_+$ such that $a_n < b_n$ for all $n \ge N$. Prove that \mathbb{R} with so-defined addition, multiplication, and ordering satisfies the axioms of ordered field, in which $0 = [(\underline{0})]$ and $1 = [(\underline{1})]$. Show that $q_1 < q_2 \Leftrightarrow \varphi(q_1) < \varphi(q_2)$ for any $q_1, q_2 \in \mathbb{Q}$ (whence \mathbb{R} contains \mathbb{Q} as an ordered subfield).
- (e) Prove that \mathbb{Q} is everywhere dense in \mathbb{R} , that is, show that for all $[(a_n)], [(b_n)] \in \mathbb{R}$, if $[(a_n)] < [(b_n)]$ then there exists $q \in \mathbb{Q}$ such that $[(a_n)] < [(\underline{q})] < [(b_n)]$, in the above sense.
- (f) **Bonus**: Prove that so-constructed \mathbb{R} is complete. That is, prove that for every non-empty bounded above set $X \subset \mathbb{R}$, there exists $[(c_n)] \in \mathbb{R}$ such that

$$\forall [(a_n)] \in X, \ [(a_n)] < [(c_n)]$$

and

$$\forall [(b_n)] \in \mathbb{R} \setminus \{ [(c_n)] \}, \quad (\forall [(a_n)] \in X, \ [(a_n)] < [(b_n)]) \Longrightarrow [(c_n)] < [(b_n)] \}.$$

Practice Problems (not to be submitted):

- 4. Prove that, if P(x) and Q(x) are polynomials of positive degrees, then the sequence $a_n = \sqrt[n]{\left|\frac{P(n)}{Q(n)}\right|}$ converges to 1. [Hint: You may apply the Algebraic Limit Theorem and Squeeze Theorem, as well as other results proved in class, as needed.]
- 5. Exercise 5.17.
- **6.** Exercise 5.18.
- 7. Exercise 6.8.
- 8. Exercise 6.11.
- **9.** Exercise 6.13.
- 10. Exercise 6.19.
- 11. Let $(a_n)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_1 = 2$, and $a_{n+1} = 2 \frac{1}{a_n}$, for all $n \ge 1$. Prove that the sequence converges and find its limit.
- 12. Let $(a_n)_{n=1}^{\infty}$ be a sequence defined recursively as follows: $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 \cdot a_n}$, for all $n \ge 1$. Prove that the sequence converges and find its limit.
- 13. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence, and suppose that $\liminf a_n = \limsup a_n$. Prove that $(a_n)_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} a_n = \liminf a_n$.
- 14. Let (a_n) and (b_n) be two bounded sequences.
 - (a) Prove that $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$.
 - (b) Give an example of sequences (a_n) and (b_n) for which the leftmost inequality in part (a) is strict.
 - (c) Give an example of sequences (a_n) and (b_n) for which the rightmost inequality in part (a) is strict.