Problem Set 6 March 22, 2025 due: April 4, 2025

All numbered exercises are from the textbook *Real Analysis, Foundations and Functions of One Variable*, by Laczkovich and Sos.

1. Exercise 10.74.

2. Define a sequence of polynomials $(P_n)_{n=0}^{\infty}$ recursively by setting $P_0(x) = 0$, and

$$P_{n+1}(x) = P_n(x) + \frac{1}{2}(x - P_n(x)^2), \quad n \in \mathbb{N}.$$

Prove by induction that the sequence (P_n) converges uniformly to the function \sqrt{x} on the interval [0,1], by showing that, for all n,

$$0 \leq \sqrt{x} - P_n(x) \leq \frac{2\sqrt{x}}{2 + n\sqrt{x}}$$

whence $0 \le \sqrt{x} - P_n(x) \le 2/n$ for all $x \in [0, 1]$.

- **3.** Let $f, g : \mathbb{R} \to \mathbb{R}$ be two uniformly continuous functions. Prove that the composite function $g \circ f$ is uniformly continuous.
- **4.** Let $A \subset \mathbb{R}$ be a non-empty set.
 - (a) Let $f : A \to \mathbb{R}$ be a uniformly continuous function. Prove that, for every Cauchy sequence $(x_n) \subset A$, the sequence $(f(x_n))$ is also Cauchy.
 - (b) Give an example of a continuous function $f : A \to \mathbb{R}$ and a Cauchy sequence $(x_n) \subset A$ such that $(f(x_n))$ is not Cauchy. Justify.

5. Let $f_n(x) = \frac{nx}{1 + n^2 x^2}$, for $x \ge 0, n \in \mathbb{N}$.

- (a) Find the pointwise limit $f: [0, \infty) \to \mathbb{R}$ of the sequence (f_n) .
- (b) Show that for any t > 0, the sequence (f_n) converges uniformly to f on the interval $[t, \infty)$.
- (c) Show that the sequence (f_n) does not converge uniformly on the interval $[0,\infty)$.

Practice Problems (not to be submitted):

- 6. A function $f: A \to \mathbb{R}$ is called *strictly increasing* when $f(x_1) < f(x_2)$ whenever $x_1 < x_2$, and *strictly decreasing* when $f(x_1) > f(x_2)$ whenever $x_1 < x_2$. In either case, we say that f is *strictly monotone*. Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a continuous injection. Prove that f is strictly monotone, and the inverse function $f^{-1}: f(I) \to I$ is a strictly monotone continuous injection.
- **7.** Exercise 10.23.
- 8. Exercise 10.25.
- **9.** Exercise 10.26.
- 10. Exercise 10.53.
- 11. Exercise 10.56.
- 12. Exercise 10.73.