Practice Final Exam

March 25, 2025

All numbered exercises are from the textbook *Real Analysis*, *Foundations and Functions of One Variable*, by Laczkovich and Sos.

- **0.** Practice problems from all Problem Sets and Practice Midterms, and unfinished proofs/exercises from lectures.
- 1. (a) State the Cantor-Schroeder-Bernstein Theorem.
 - (b) Use only Cantor-Schroeder-Bernstein Theorem to prove that the intervals (0,1) and (0,1] are equinumerous.
 - (c) Use only Cantor-Schroeder-Bernstein Theorem to prove that the sets $(0,2) \setminus \{1\}$ and [0,1] are equinumerous.
- **2.** (a) State the definition of an equivalence relation on a set A.
 - (b) Give an example of a reflexive relation on a set A, which is not an equivalence relation. Justify.
 - (c) Give an example of a symmetric relation on a set A, which is not an equivalence relation. Justify.
- 3. (a) State the definition of divergence to ∞ and to $-\infty$ (for a sequence of real numbers).
 - (b) Give an example of an unbounded sequence, which does not diverge to ∞ nor $-\infty$. Justify.
- **4.** (a) State the definitions of supremum and infimum of a non-empty bounded set $A \subset \mathbb{R}$.
 - (b) Give an example of a bounded set A, for which $\inf(A) \notin A$ and $\sup(A) \in A$. Justify.
 - (c) Characterize the intervals $I \subset \mathbb{R}$ with the property that $\inf(I), \sup(I) \in I$. Justify.
 - (d) Give an example of bounded sets $A, B \subset \mathbb{R}$, such that $A \neq \emptyset \neq B$, $A \cap B = \emptyset$, $\inf(A) = \inf(B)$, and $\sup(A) = \sup(B)$. Justify. Could A and/or B be chosen finite? Justify.
- **5.** (a) State the definition of continuity, uniform continuity, and the Lipschitz condition for a function $f: A \to \mathbb{R}$.
 - (b) State the definitions of pointwise and uniform convergence of a functional sequence (f_n) .
 - (c) State the definitions of pointwise, uniform, and absolute convergence of a functional series $\sum f_n$.
- **6.** (a) State the Extreme Value Theorem and Intermediate Value Theorem.
 - (b) State the Heine-Borel Theorem.
 - (c) State the Weierstrass M-Test.
- 7. For each of the theorems stated in Problem 6, remove one of the assumptions and give a counterexample to a theorem with that assumption missing. Justify. (E.g., give an example of a closed unbounded set, which does not satisfy the definition of a compact set.)
- **8.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Use only definitions of continuity, and open and closed sets, to prove that the set $\{x \in \mathbb{R} : f(x) < 0\}$ is open and the set $\{x \in \mathbb{R} : f(x) \geq 0\}$ is closed.

- **9.** (a) State the definition of uniform convergence of a sequence of functions $f_n: A \to \mathbb{R}$.
 - (b) Let (f_n) be a sequence of functions on \mathbb{R} , uniformly convergent to a function $f: \mathbb{R} \to \mathbb{R}$. Suppose that, for each $n \in \mathbb{N}$, there exists $M_n \in \mathbb{R}$ with $f_n(x) > M_n$ for all $x \in \mathbb{R}$. Prove that there exists $M \in \mathbb{R}$ such that f(x) > M for all $x \in \mathbb{R}$.
- 10. (a) Let $f_n(x) = \frac{x}{1+x^n}$, $x \in [0,\infty)$, $n \in \mathbb{N}$. Find the pointwise limit of the sequence (f_n) on $[0,\infty)$. Show that the convergence is not uniform on $[0,\infty)$. Find a smaller set on which the convergence is uniform.
 - (b) Let $f_n(x) = \frac{x}{1 + nx^2}$, $x \in \mathbb{R}$, $n \in \mathbb{N}$. Find the pointwise limit of the sequence (f_n) on \mathbb{R} . Is the convergence uniform? Justify.
 - (c) Let $f_n(x) = \frac{x}{x+n}$, $x \in [0, \infty)$, $n \in \mathbb{N}_+$. Prove that for every b > 0 the sequence (f_n) converges uniformly on [0, b].
- 11. (a) Use the Weierstrass M-Test to prove that the formula $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ defines a continuous function f on the interval [-1,1].
 - (b) Use the Weierstrass M-Test to prove that the formula $g(x) = \sum_{n=1}^{\infty} \frac{nx}{n^3 + x^2}$ defines a continuous function g on \mathbb{R} . [Hint: Show that g is continuous on every interval of the form [-R,R] with R>0.]
- 12. Let (a_n) be a bounded sequence of real numbers such that the series $\sum a_n$ diverges. Prove that the radius of convergence of the power series $\sum a_n x^n$ is 1.