The University of Western Ontario Department of Mathematics

Mathematics 3124A/9024A, Fall 2025: COMPLEX ANALYSIS I

FINAL EXAM REVIEW

Material

- Harmonic functions Laplace's equation, finding harmonic conjugates, existence of analytic function with the prescribed real/imaginary part.
- Power series definition and calculation of radius of convergence.
- Abel-Weierstrass Lemma, Identity Principle for power series and analytic functions.
- Theorems on term by term differentiation / integration; evaluation of infinite sums by means of these theorems.
- Definition of a line integral.
- Equivalent conditions for vanishing of a closed contour integral.
- Equivalent conditions for analyticity of a function; determining the domain of analyticity by means of the various equivalent conditions, like CR-equations (e.g., \bar{z} , |z|, Im z, etc.), convergence of Taylor expansion (e.g., $\sum \frac{z^n}{2}$, $\frac{1}{z-a}$, etc.), Cauchy Thm. for triangles + Morera Theorem.
- Index (winding number) of a curve with respect to a point.
- Cauchy Closed Curve Theorem and Cauchy Integral Formula in full generality (Cauchy-Dixon).
- Consequences of Cauchy Theorem for entire functions: Fundamental Theorem of Algebra, Liouville's Theorem.
- Other consequences: Cauchy Estimates, Maximum Modulus Principle, Open Mapping Theorem, Schwarz Lemma, Schwarz Reflection Principle.
- Definition and classification of isolated singularities, equivalent characterizations.
- Laurent expansion existence of, and radii of convergence; explicit evaluations using Geometric Series Theorem; integral representation of coefficients in the expansion.
- Definition(s) of residue; explicit calculation of residues by means of Cauchy Integral Formula or Laurent expansion.
- Singularities at (complex) infinity.
- Residue Theorem in full generality, Rouché's Theorem.
- Evaluation of definite integrals by means of Residue Theorem.

Practice problems

- 1. Problems from Problem Sets 1–10 and Practice Midterms.
- 2. If u(x,y) and v(x,y) are harmonic, are the following functions harmonic?
 - (a) u(v(x,y),0)
 - (b) $u(x,y) \cdot v(x,y)$
 - (c) u(x,y) + v(x,y).
- 3. Let γ be the unit circle. Prove that $\left| \int_{\gamma} \frac{\sin z}{z^2} \, dz \right| \leq 2\pi e$.
- 4. Show that $\sum_{n=1}^{\infty} \frac{1}{z^n}$ is analytic on $A = \{z \in \mathbb{C} : |z| > 1\}$.
- 5. Show that $\sum_{n=0}^{\infty} \frac{1}{n!z^n}$ is analytic on $\mathbb{C} \setminus \{0\}$. Evaluate its integral around the unit circle.
- 6. Evaluate the sums:

(a)
$$\sum_{n=1}^{\infty} \frac{n\pi^n}{(2e)^n},$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \pi^{n+1}}{2^n (2n-1)!}.$$

7. Characterize the piecewise smooth simple closed curves γ for which the following equation holds

$$\int_{\gamma} \frac{z^3 e^{1/z}}{(z^2 + z + 1)(z^2 + 1)} dz = 0.$$

- 8. Let f be a function analytic in \mathbb{C} except for a finite number of singularities $\{z_1,\ldots,z_s\}$, and let $R > \max\{|z_j| : j = 1, \dots, s\}$. Prove that, if $|f(z)| \le M$ for all $z \in C(0; R)$ and $\lim_{z \to \infty} f(z) = 0$, then $|f(z)| \leq M$ for all z with $|z| \geq R$.
- 9. Let f be a function analytic in the open upper half plane, continuous on the closed upper half plane, and real-valued on the real axis. Prove that, if $|f(z)| \le 1$ for $z \in \{x + iy \in \mathbb{C} : y \ge 0, x^2 + y^2 = 4\}$ and $\lim_{z\to\infty} f(z) = 0$, then f is a constant function.
- 10. Show that there is exactly one point z in the right half plane $\{w: \text{Re}(w) > 0\}$, at which $z + e^{-z} = 2$. Hint: For R big enough, consider the curve given as the boundary of a right semicircle with radius Rcentered at the origin.
- 11. Let f be analytic in a domain containing the closed unit disc, and such that 0 < |f(z)| < 1 for |z| = 1. Show that f has exactly one fixed point z_0 (i.e., $f(z_0) = z_0$) inside the unit disc.
- 12. Evaluate the integrals:

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^6}$$

(b)
$$\int_0^\infty \frac{x \sin x}{1 + x^4} \, dx$$

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^6}$$
, (b) $\int_{0}^{\infty} \frac{x \sin x}{1+x^4} dx$, (c) $\int_{-\infty}^{\infty} \frac{dx}{x(x^3-1)}$.

13. Classify the singularity at infinity, and evaluate the residue at infinity of the following functions:

(a)
$$f(z) = \frac{z^6}{6z^5 - 4z^3 + 2z}$$
, (b) $f(z) = \frac{\sin z}{4z^3 + 2z}$, (c) $f(z) = \frac{\sin(e^{\cos z})}{3z^2}$.

(b)
$$f(z) = \frac{\sin z}{4z^3 + 2z}$$
,

(c)
$$f(z) = \frac{\sin(e^{\cos z})}{2}$$

14. Let f be a function meromorphic on $\hat{\mathbb{C}}$, and assume that f has at ∞ a pole of order 1. Prove that

2

$$\operatorname{Res}(f; \infty) = \lim_{z \to \infty} \frac{f(z)}{z}$$
.