The University of Western Ontario Department of Mathematics

Math 9024A COMPLEX ANALYSIS I

Presentation Topics for Fall 2025

1. Cauchy-Dixon Theorem (as stated in class).

Task: Proof of the theorem.

References: [A], [D].

2. Existence of analytic logaritms.

Statement: If f is analytic in a simply-connected domain D and $f(z) \neq 0$ for all $z \in D$, then f has an analytic logarithm in D; i.e., there is a function $g \in \mathcal{O}(D)$ such that $\exp(g(z)) = f(z)$ for all $z \in D$.

Task: Proof + example + discussion of what can go wrong if <math>D not simply-connected.

References: [A], [L].

3. Corollary of Residue Theorem for calculating improper integrals.

Statement: Let f be analytic on the closed upper half-plane $\{z : \text{Im}(z) \geq 0\}$ except for a finite number of points z_1, \ldots, z_k with $\text{Im}(z_j) > 0$. Suppose there are constants M > 0, R > 0 and $\alpha > 1$ such that $|f(z)| < \frac{M}{|z|^{\alpha}}$ for all z with |z| > R. Then, the integral $\int_{-\infty}^{+\infty} f(x) dx$ is convergent and

$$\int_{-\infty}^{+\infty} f(x) \ dx = 2\pi i \cdot \sum_{j=1}^{k} \operatorname{Res}(f; z_j).$$

Task: Proof + example of application.

References: [A], [L].

Suggested sources:

- [A] J. Adamus, Lecture notes
- [D] J. Dixon, A brief proof of Cauchy's integral theorem, Proc. Amer. Math. Soc. 29 (1971), 625–626.
- [L] S. Lang, "Complex Analysis" 4th edition, GTM 103, Springer, 1999.