Problem Set 3

September 20, 2025.

- 1. Determine convergence of the series $\sum_{n=1}^{\infty} \frac{1+i^{2n}}{n^n}$.
- **2.** Let $S \subset \mathbb{C}$ be a non-empty set, and let $f_n : S \to \mathbb{C}$, $n \in \mathbb{N}$, be functions on S. Suppose that all the f_n are continuous, and the sequence $(f_n)_n$ converges locally uniformly to a function $f : S \to \mathbb{C}$. Prove that f is continuous.
- **3.** Let $S \subset \mathbb{C}$ be a non-empty set, and let $f_n : S \to \mathbb{C}$ $(n \in \mathbb{N})$ and $f : S \to \mathbb{C}$ be functions on S. Verify that the sequence $(f_n)_n$ converges uniformly on S to f if and only if the sequence of sup-norms $||f_n f||_S$ converges to 0.
- **4.** (a) Prove that $f(z) = \sum_{n=0}^{\infty} nz^n$ is continuous in the disc |z| < 1.
 - (b) Prove that $g(z) = \sum_{n=1}^{\infty} \frac{1}{n^2 + z}$ is continuous in the right half-plane Re(z) > 0.
- **5.** Check that:

(a)
$$e^{z_1} = e^{z_2} \iff \frac{z_1 - z_2}{2\pi i} \in \mathbb{Z}$$

- (b) $e^{z+2k\pi i} = e^z$ for all $z \in \mathbb{C}$ and all $k \in \mathbb{Z}$.
- **6.** (a) Find the image of the set $\{z \in \mathbb{C} : \text{Im}(z) = \pi/4\}$ by the exponential function $\exp(z)$. In general, what are the images by $\exp(z)$ of horizontal lines?
 - (b) Find the image of the set $\{z \in \mathbb{C} : \text{Re}(z) = 0\}$ by the exponential function $\exp(z)$. In general, what are the images by $\exp(z)$ of vertical lines?
- 7. Check that $\cos(-z) = \cos z$ and $\sin(-z) = -\sin z$ for all $z \in \mathbb{C}$.
- **8.** Use the Euler formulas to prove that:

(a)
$$\cos(z) = 0 \iff z = (2k+1)\frac{\pi}{2}, \ k \in \mathbb{Z}$$

(b)
$$\sin(z) = 0 \iff z = k\pi, \ k \in \mathbb{Z}.$$

That is, show that the complex sine and cosine functions vanish only on the zeros of their real counterparts.

9. Check the following set-theoretical equalities

(a)
$$\log(zw) = \log z + \log w$$
 for all $z, w \in \mathbb{C}$

(b)
$$\log(z/w) = \log z - \log w$$
 for all $z, w \in \mathbb{C}, w \neq 0$,

where $A\pm B=\{a\pm b:a\in A,b\in B\}$ for subsets $A,B\subset \mathbb{C}.$