Problem Set 5

October 4, 2025.

1. Find first five non-zero terms of the power series representation of each of the following functions at the given center:

(a)
$$\frac{\sin z}{z}$$
, $z_0 = 1$, (b) $z^2 e^z$, $z_0 = 0$, (c) $e^z \sin z$, $z_0 = \pi$.

- **2.** (a) Use the power series definition of the exponential function (and the Term-by-Term Differentiation Theorem proved in class) to show that $(e^z)' = e^z$, for all $z \in \mathbb{C}$.
 - (b) Use the definition of complex functions sin and cos (or Euler formulas) to show that $(\sin z)' = \cos z$ and $(\cos z)' = -\sin z$, for all $z \in \mathbb{C}$.
- **3.** Determine which of the following polynomials are \mathbb{C} -differentiable:

(a)
$$P(x+iy) = x^3 - 3xy^2 - x + i(3x^2y - y^3 - y)$$

(b)
$$P(x+iy) = x^2 + iy^2$$

(c)
$$P(x+iy) = 2xy + i(y^2 - x^2)$$

- **4.** Show that there is no power series $f(z) = \sum a_n z^n$ with positive radius of convergence and such that f(1/k) = 1 for all $k \in \mathbb{Z}_+$, and $f'(0) \neq 0$.
- **5.** (a) Find all entire functions f = u + iv with $u(x + iy) = x^2 y^2$.
 - (b) Show that there are no analytic functions f = u + iv with $u(x + iy) = x^2 + y^2$.
- **6.** For each of the following functions, show it is harmonic on a domain D (what's the largest such D?) and find its harmonic conjugate:

(a)
$$u(x,y) = e^x \cos y$$

(b)
$$u(x,y) = \ln \sqrt{x^2 + y^2}$$

(c)
$$u(x,y) = \sin x \cdot \frac{(e^y + e^{-y})}{2}$$
.

- 7. Let f be a non-constant function analytic in the disc D(0;2) and such that $f(z) \neq 0$ for all z with $|z| \leq 1$. Prove that there is no point $z_0 \in D(0;1)$ satisfying $|f(z_0)| \leq |f(z)|$ for all z with |z| = 1.
- **8.** Evaluate $\int_{\gamma} z^2 dz$, where γ is the curve $\gamma(t) = t^2 + it^3$, $t \in [0, 1]$.
- **9.** Evaluate $\int_{\gamma} \frac{dz}{z}$, where γ is given as $\gamma(t) = \sin t + i \cos t$, $t \in [0, 2\pi]$. Compare the answer with the formula given in class for integrals of $(z z_0)^n$ along a circle centered at z_0 and explain the difference.
- **10.** Find a real number M > 0 such that $\left| \int_{\gamma} \frac{dz}{2+z^2} \right| \leq M$, where γ is the upper half of the unit circle.