Problem Set 6

October 18, 2025.

- **1.** Let C be the arc of the circle |z|=2 that lies in the first quadrant. Show that $\left|\int_C \frac{dz}{z^2+1}\right| \leq \frac{\pi}{3}$.
- 2. Evaluate the integrals
 - (a) $\int_{\gamma_1} \bar{z} dz$
 - (b) $\int_{\gamma_2} \bar{z} dz$
 - (c) $\int_{\gamma_1} \frac{e^z}{(z+i)^2} dz$
 - (d) $\int_{\gamma_2} \frac{e^z}{(z+i)^2} dz,$

where γ_1 is the interval [0,1] and $\gamma_2 = [0,i] \cup [i,i+1] \cup [i+1,1]$ is the remaining part of the circumference of a unit square centered at 1/2 + i/2.

- **3.** Suppose that an analytic function f agrees with $\tan x$ for $x \in [0,1]$. Show that f(z) = i has no solution. Could f be entire?
- **4.** Find the maximum and minimum moduli of $z^2 z$ for $|z| \le 2025$. Justify your answer.
- **5.** Suppose that f is analytic in the closed unit disc $\overline{D(0,1)}$ (i.e., by definition, $f \in \mathcal{O}(\Omega)$ for some open $\Omega \subset \mathbb{C}$ containing $\overline{D(0,1)}$). Prove that then there exists $n \in \mathbb{Z}_+$ such that $f(1/n) \neq 1/(n+1)$. [Hint: Express 1/(n+1) in terms of 1/n.]