Problem Set 8

November 15, 2025.

1. Prove that the image of \mathbb{C} by a non-constant entire function is dense in \mathbb{C} .

[Hint: Consider separately the cases when f is polynomial and transcendental (non-polynomial).]

2. For each of the following functions, find its Laurent expansion convergent in some punctured disc centered at z_0 , $\{z \in \mathbb{C} : 0 < |z - z_0| < R\}$:

(a)
$$f(z) = \frac{1}{z^4 + z^2}$$
, $z_0 = 0$

(b)
$$f(z) = \frac{e^{1/z^2}}{z}$$
, $z_0 = 0$

(c)
$$f(z) = \frac{1}{z^2 - 4}$$
, $z_0 = 2$.

3. For each of the functions in Problem 2, find the integrals

$$\int_{C(z_0;\varepsilon)} f(\zeta) d\zeta \quad \text{and} \quad \int_{C(z_0;\varepsilon)} f(\zeta) (\zeta - z_0)^{2025} d\zeta \,,$$

where ε is some small positive constant.

[Hint: Do not attempt a direct computation.]

4. Find all different Laurent expansions about $z_0 = 1$ of the function

$$f(z) = \frac{1}{z} - \frac{2z}{z-2} + \frac{z^3}{z+3}$$
,

and determine their respective annuli of convergence.

5. Evaluate $\int_{C(0;2)} ze^{3/z} dz$. Justify your answer.