Practice Midterm I

- **0.** Problems from Problem Sets 1–5.
- 1. (a) State definitions of the argument and the principal argument of a non-zero complex number.
 - (b) State the definition of the logarithm of a complex number.
 - (c) Find the set of those $z \in \mathbb{C} \setminus \{0\}$ for which $\operatorname{Arg}(\bar{z}) = \operatorname{Arg}(z^{-1})$. Justify your answer.
- **2.** Find i^i . Justify your answer.
- **3.** Sketch the set $\left\{z\in\mathbb{C}: \frac{|e^z+2025|}{|e^z-2025|}=1\right\}$. Justify your answer.
- 4. (a) State one of the equivalent definitions of C-differentiability of a function of complex variable.
 - (b) State the Cauchy-Riemann equations (and explain your notation).
 - (c) Prove that the function $f(z) = e^{\bar{z}}$ is not \mathbb{C} -differentiable at any point in \mathbb{C} .
- **5.** State the definition of an analytic function and find the domain of analyticity of $f(z) = \frac{1}{z-2} \frac{e^z}{2z}$. What is the radius of convergence of the power series representation of f at $z_0 = 2i$?
- **6.** Let $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) < 0\}$. Prove that the series $\sum_{1}^{\infty} \frac{1}{z n^2}$ converges for every $z \in \Omega$. Prove that the function $f : \Omega \to \mathbb{C}$ defined as $f(z) = \sum_{1}^{\infty} \frac{1}{z n^2}$ is continuous in Ω .
- 7. Find the sum of the infinite series $\sum_{n=1}^{\infty} \frac{(n^2-n)\pi^n}{2^{2n}}.$
- 8. For each of the following functions v(x, y), find its harmonic conjugate in the right half-plane (if exists) and find a closed form of a function f(z) whose *imaginary* part equals v:
 - (a) $v(x,y) = \arctan \frac{y}{x}$
 - (b) $v(x,y) = 6x^2y 2y^3$
 - (c) $v(x,y) = e^x \cos(iy)$.
- 9. (a) State the definitions of a harmonic function and its harmonic conjugate.
 - (b) Find all harmonic conjugates of $v(x,y) = \frac{\sin x}{e^y}$
 - (c) Find an entire function f (in its closed form) whose imaginary part equals v.
- 10. Show that if f = u + iv is \mathbb{C} -differentiable in an open set Ω and u is constant on Ω , then so is f.
- 11. Find the maximum of $|ze^{z^2-1}|$ on the closed unit disc.
- 12. Use the definition of contour integral to prove that
 - (a) $\int_{\gamma} af + bg = a \int f + b \int g$
 - (b) $\int_{-\gamma} f = -\int_{\gamma} f$
 - (c) $\int_{\gamma_1+\gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$,

where $a, b \in \mathbb{C}$, f, g are continuous functions, and $\gamma, \gamma_1, \gamma_2$ are piecewise \mathfrak{C}^1 curves.

1