Practice Midterm II

- **0.** Problems from Problem Sets 6 and 7.
- 1. Review the Characterization of Analytic Functions Theorem (a.k.a. the 7 Equivalent Conditions Thm.) and give a detailed proof.
- 2. (a) State the Cauchy Integral Formula in the maximal generality you know to hold true.
 - (b) Give one example for necessity of each of the assumptions made in your statement of CIF.
- **3.** (a) Let f be analytic in a simply connected domain $D \subset \mathbb{C}$, and let γ be a piecewise C^1 non-degenerate closed curve in D, such that $f(\zeta) = 0$ for all $\zeta \in \gamma$. Prove that f is identically zero on D.
 - (b) Give an example of a *non*-simply connected open set $D \subset \mathbb{C}$, a function $f \in \mathcal{O}(D)$, and a simple closed curve $\gamma \in D$, such that $\int_{\gamma} f(\zeta) d\zeta \neq 0$. Justify your answer.
- **4.** Let f be analytic on the unit disc, and assume that $|f(z)| \le 1$ for |z| = 1/2. Prove that $|f'(0)| \le 2$.
- 5. (a) State the definition of index (winding number) of a piecewise C^1 closed curve with respect to a point.
 - (b) Sketch a closed curve γ for which there exist points z_0, z_1, z_2 with $I(\gamma; z_j) = j$, for j = 0, 1, 2. (Identify those points in your picture.)
 - (c) Let γ and $z_2 \in \mathbb{C}$ be as in part (b). Explain why $\int_{\gamma} \frac{d\zeta}{\zeta z_2}$ is not equal to $\int_{C(z_2;\varepsilon)} \frac{d\zeta}{\zeta z_2}$.
- **6.** (a) Give an example of a bounded domain Ω in \mathbb{C} and a piecewise \mathbb{C}^1 closed curve γ in Ω such that $I(\gamma; a) = 5$ for some point $a \in \mathbb{C} \setminus \Omega$.
 - (b) Give an example of a bounded domain Ω in \mathbb{C} and a cycle $\Gamma = \gamma_1 + \cdots + \gamma_s$ (for some $s \in \mathbb{Z}_+$) such that each γ_j is a \mathcal{C}^1 simple closed curve in Ω , no two γ_i, γ_j intersect, and for every $k \in \{1, \ldots, 5\}$ there is a point $a_k \in \mathbb{C} \setminus \Omega$ such that $I(\Gamma; a_k) = k$.
- 7. (a) State the definition of a piecewise \mathcal{C}^1 simple closed curve in \mathbb{C} .
 - (b) Give an example of a piecewise \mathcal{C}^1 simple closed curve γ for which

$$\int_{\gamma} \frac{z^3 e^{1/z}}{(z^2+z+1)(z^2+1)} \, dz \ = \ 0 \, .$$

Justify your answer.

(c) Let γ be the circle C(0;2) traversed (one time) counter-clockwise. Prove that there exist $k \in \mathbb{Z}_+$ and \mathbb{C}^1 simple closed curves $\gamma_1, \ldots, \gamma_k$ such that the cycle $\Gamma := \gamma - \sum_{j=1}^k \gamma_j$ satisfies

$$\int_{\Gamma} \frac{z^3 e^{1/z}}{(z^2 + z + 1)(z^2 + 1)} dz = 0.$$

8. Find a real number $M \ge 0$ such that $\left| \int_{C(0;1)} \frac{2z+1}{z^5} \, dz \right| \le M$. What is the least such M? Justify your answer.

9. Let γ denote the circle C(0;2) traversed two times counter-clockwise. Evaluate the following integrals. [Hint: Use the Cauchy-Dixon Theorem to represent a given integral as a linear combination of certain simpler integrals.]

(a)
$$\int_{\gamma} \frac{\sin(\pi z)}{z^3 - 1} dz$$
 (b) $\int_{\gamma} \frac{e^z}{(z^2 + 1)^2} dz$ (c) $\int_{\gamma} \frac{dz}{(z^2 + 2z - 3)^4}$.

- 10. Let γ denote the limaçon $r = 2 + 4\cos\theta$ ($\theta \in [0, 2\pi]$) traversed three times counter-clockwise.
 - (a) What is the index of γ with respect to $z_0 = 1$?
 - (b) Evaluate the integral

$$\int_{\gamma} \frac{z^5 + 2z^4 + 3z^3 + 4z^2 + 5z}{z^2 - 1} \, dz \, .$$

11. Find and classify all singularities in the Riemann sphere $\widehat{\mathbb{C}}$ of the following functions. Justify your answer.

(a)
$$f(z) = \frac{e^z}{z^4 + z^2}$$
 (b) $f(z) = \frac{\sin(\pi z)}{z^3(z^2 + 1)}$ (c) $f(z) = \frac{\sin(z^2)}{z^4 + z^2}$ (d) $f(z) = \frac{e^{1/z}}{z^2 + 1}$.

- 12. (a) How many different Laurent expansions centered at $z_0 = i$ are there for the function $f(z) = \frac{1}{z^2+1} \frac{2}{z+1}$? Justify your answer.
 - (b) Find all the Laurent series of f(x), and for each one determine the largest region in which it is convergent.