Problem Set 2 September 27, 2018.

- 1. Check the following set-theoretical equalities
 - (a) $\log(zw) = \log z + \log w$, for all $z, w \in \mathbb{C}$
 - (b) $\log(z/w) = \log z \log w$, for all $z, w \in \mathbb{C}, w \neq 0$,

where $A \pm B = \{a \pm b : a \in A, b \in B\}$ for subsets $A, B \subset \mathbb{C}$.

2. Prove that every open connected set S in \mathbb{C} is path-connected.

[Hint: Given $z_0 \in S$, consider the set S_0 of points in S that can be connected by a path with z_0 . Show that S_0 is non-empty, open and closed. Use definition of connectedness to derive that $S \setminus S_0 = \emptyset$.]

- **3.** Let $P(z) = a_0 z^n + \dots + a_{n-1} z + a_n$ be a polynomial with complex coefficients, where $a_0 \neq 0, n \in \mathbb{Z}_+$, and let $R = \max\{\sqrt[k]{\frac{|a_k|}{|a_0|}} : k = 1, \dots, n\}$. Prove that, if $P(z_0) = 0$ then $|z_0| \leq 2R$.
- 4. Find the 5'th roots of the number $-1 + i\sqrt{3}$.
- 5. For $n \ge 3$, let D_n be a regular *n*-gon inscribed in the unit circle. Suppose that one of the vertices of D_n is at 1, and let $d_1, d_2, \ldots, d_{n-1}$ be the distances of the other vertices from 1. Prove that $d_1 d_2 \ldots d_{n-1} = n$.
- 6. Prove that $g(z) = \sum_{n=1}^{\infty} \frac{1}{n^2 + z}$ is continuous in the right half-plane $\{z : \operatorname{Re}(z) > 0\}$.
- 7. Prove that the following function series converge absolutely and uniformly on the open unit disc D(0, 1):
 - (a) $\sum_{1}^{\infty} \frac{z^{n+1}}{n!}$ (b) $\sum_{1}^{\infty} \frac{z^{2n}}{n^2}$ (c) $\sum_{0}^{\infty} \left(\frac{z}{2}\right)^n$ (d) $\sum_{1}^{\infty} \left(1 + \frac{z}{2} + \frac{z^2}{4} + \dots + \frac{z^n}{2^n} - \frac{2}{2-z}\right).$
- 8. For each of the following series, find the radius of convergence R, and discuss convergence on the circle C(0, R):
 - (a) $\sum_{0}^{\infty} n^2 z^n$ (b) $\sum_{0}^{\infty} n! z^n$ (c) $\sum_{0}^{\infty} \frac{z^n}{1+2^n}$ (d) $\sum_{1}^{\infty} \frac{n! z^n}{n^n}$ (e) $\sum_{1}^{\infty} \frac{2^n z^n}{n!}$.