Problem Set 3

October 20, 2018.

- 1. For each of the following functions, find its domain and the largest set on which the function is analytic:
 - (a) $e^z \cos z$
 - (b) $\frac{e^z}{(z-i)^{100}}$

 - (c) $\frac{(1-z)\sin z}{z^4-1}$ (d) $\sum_{n=0}^{\infty} n z^n.$
- **2.** Show that $f(z) = \overline{z}$ is not \mathbb{C} -differentiable at any point in \mathbb{C} .
- **3.** Determine which of the following polynomials are C-differentiable:
 - (a) $P(x+iy) = x^3 3xy^2 x + i(3x^2y y^3 y)$
 - (b) $P(x+iy) = x^2 + iy^2$
 - (c) $P(x+iy) = 2xy + i(y^2 x^2)$.
- 4. Show that there is no power series $f(z) = \sum a_n z^n$ with positive radius of convergence and such that (i) f(z) = 1 for $z = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ and (ii) f'(0) > 0.
- 5. Show that there are no analytic functions f = u + iv with $u(x + iy) = x^2 + y^2$.
- **6.** Suppose D is a non-empty domain in \mathbb{C} , $f \in \mathcal{O}(D)$, and a sequence $(z_k)_{k=1}^{\infty}$ converges to a point $z_0 \in D$. Prove that, if $f'(z_k) = 0$ for all $k \in \mathbb{Z}_+$, then f is a constant function.
- 7. Find harmonic conjugates for the following functions:
 - (a) $u(x, y) = e^x \cos y$
 - (b) $u(x,y) = \ln \sqrt{x^2 + y^2}$

(c)
$$u(x,y) = \sin x \cdot \frac{(e^y + e^{-y})}{2}$$