Problem Set 4 October 26, 2018.

- **1.** Let f be a non-constant function analytic in the disc D(0,2) and such that $f(z) \neq 0$ for all z with $|z| \leq 1$. Prove that there is no point $z_0 \in D(0,1)$ satisfying $|f(z_0)| \leq |f(z)|$ for all z with |z| = 1.
- 2. Use the definition of line integral to prove that
 - (a) $\int_{\gamma} \alpha f + \beta g = \alpha \int_{\gamma} f + \beta \int_{\gamma} g$
 - (b) $\int_{-\gamma} f = -\int_{\gamma} f$
 - (c) $\int_{\gamma_1+\gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$,

where $\alpha, \beta \in \mathbb{C}$, f, g are continuous functions, and $\gamma, \gamma_1, \gamma_2$ are piecewise \mathbb{C}^1 curves (such that $\gamma_1 + \gamma_2$ is well-defined).

- **3.** Evaluate $\int_{\gamma} z^2 dz$, where γ is the curve $\gamma(t) = t^2 + it^3$, $t \in [0, 1]$.
- 4. Evaluate $\int_{\gamma} \frac{dz}{z}$, where γ is given as $\gamma(t) = \sin t + i \cos t$, $t \in [0, 2\pi]$. Compare the answer with the formula given in class for integrals of $(z z_0)^n$ along a circle centered at z_0 and explain the difference.
- 5. Find a real number M > 0 such that $\left| \int_{\gamma} \frac{dz}{2+z^2} \right| \le M$, where γ is the upper half of the unit circle.
- 6. Let C be the arc of the circle $\{z : |z| = 2\}$ that lies in the first quadrant. Show that $\left| \int_C \frac{dz}{z^2 + 1} \right| \le \frac{\pi}{3}$.
- 7. Evaluate the integrals
 - (a) $\int_{\gamma_1} \bar{z} \, dz$
 - (b) $\int_{\gamma_2} \bar{z} \, dz$
 - (c) $\int_{\gamma_1} \frac{e^z}{(z+i)^2} dz$
 - (d) $\int_{\gamma_2} \frac{e^z}{(z+i)^2} dz$,

where γ_1 is the interval [0,1] and $\gamma_2 = [0,i] \cup [i,i+1] \cup [i+1,1]$ is the remaining part of the circumference of a unit square centered at 1/2 + i/2 (traversed clockwise).