Problem Set 5

November 2, 2018.

1. Let $D \subset \mathbb{C}$ be a nonempty domain (i.e., a connected open set). Prove that for every $a, b \in D$ there exists a piecewise \mathbb{C}^1 curve $\gamma : [0,1] \to D$ satisfying $\gamma(0) = a$ and $\gamma(1) = b$.

[Hint: Fix $z_0 \in D$ and let S be the set of all points $z \in D$ which can be connected with z_0 by a piecewise \mathbb{C}^1 curve in D. Show that S is nonempty, open and closed.]

- **2.** Find the maximum and minimum moduli of $z^2 z$ for $|z| \le 2018$. Justify your answer.
- **3.** Find the maximum of $|ze^{z^2-1}|$ on the closed unit disc.
- 4. Evaluate the following integrals. Justify your answers.

(a)
$$\int_{C(1,1)} \frac{dz}{z^2 - 1}$$

(b)
$$\int_{C(1,1)} \frac{e^z dz}{(z^2 - 1)^2}$$

(c)
$$\int_{C(1,\frac{1}{2})} \frac{dz}{(1 - z)^3}$$

(d)
$$\int_{C(i,\frac{1}{2})} \frac{z^3 \cos z}{z^4 - 1} dz$$

- 5. Suppose that an analytic function f (defined on some open $\Omega \subset \mathbb{C}$ containing the interval $[0,1] \subset \mathbb{R}$) agrees with $\tan x$ for $x \in [0,1]$. Show that f(z) = i has no solution.
- 6. Suppose that f is analytic in the closed unit disc D(0, 1) (i.e., by definition, $f \in O(\Omega)$ for some open $\Omega \subset \mathbb{C}$ containing $\overline{D(0,1)}$). Prove that then there exists $n \in \mathbb{Z}_+$ such that $f\left(\frac{1}{n}\right) \neq \frac{1}{n+1}$. [Hint: Suppose otherwise. Express 1/(n+1) in terms of 1/n to show that f coincides with another function g at every $z_n = 1/n$. Use the Local Isolation of Zeros to show that f = g. Finally, get a contradiction by showing that g is not analytic in the whole $\overline{D(0,1)}$.]