Problem Set 7 November 16, 2018.

- **1.** Give a detailed proof of the "Characterization of Analytic Functions" (a.k.a., the "7 Equivalent Conditions") theorem from class.
- 2. The following is needed to complete the solution of Problem 2 from PS 6: Let f be an entire function. Prove that f is a polynomial if and only if there exist R > 0, C > 0 and $N \in \mathbb{Z}_+$ such that $|f(z)| \leq C|z|^N$ for all z with $|z| \geq R$. [Hint: Use the Cauchy Estimates theorem.]
- **3.** For each of the following functions, find its Laurent expansion convergent in some punctured disc centered at z_0 , $\{z \in \mathbb{C} : 0 < |z z_0| < R\}$:

(a)
$$f(z) = \frac{1}{z^4 + z^2}, z_0 = 0$$

(b) $f(z) = \frac{e^{1/z^2}}{z}, z_0 = 0$
(c) $f(z) = \frac{1}{z^2 - 4}, z_0 = 2$.

4. For each of the functions in Problem 3, find the integrals

$$\int_{C(z_0,\epsilon)} f(\zeta) d\zeta \quad \text{and} \quad \int_{C(z_0,\epsilon)} f(\zeta) (\zeta - z_0)^{2018} d\zeta$$

where ϵ is some small positive constant. [Hint: Do not attempt a direct computation.]

5. Find all different Laurent expansions about $z_0 = 1$ of the function

$$f(z) = \frac{1}{z} - \frac{2z}{z-2} + \frac{z^3}{z+3}$$

and determine their respective annuli of convergence.

6. Given a Laurent series $\sum_{n=-\infty}^{-1} c_n (z-z_0)^n$, set $r = \limsup_{n \to \infty} \sqrt[n]{|c_{-n}|}$. Prove that the function $f(z) = \sum_{n=-\infty}^{-1} c_n (z-z_0)^n$ is well-defined and analytic in $\Omega := \{z \in \mathbb{C} : |z| > r\}$.