Problem Set 8

November 23, 2018.

1. (Casorati-Weierstrass Theorem) Suppose $z_0 \in \mathbb{C}$ is an essential singularity of f and R > 0 is such that $f \in \mathcal{O}(D(z_0, R) \setminus \{z_0\})$. Prove that, for every 0 < r < R, we have $\overline{f(D(z_0, r) \setminus \{z_0\})} = \mathbb{C}$ (that is, the set $\{f(z) : z \in D(z_0, r) \setminus \{z_0\}\}$ is dense in \mathbb{C}).

[Hint: Given r as above, suppose, for a proof by contradiction, that there are $w \in \mathbb{C}$ and $\delta > 0$ such that $|f(z) - w| > \delta$ for all $z \in D(z_0, r) \setminus \{z_0\}$. Show that then the function $h(z) := \frac{1}{f(z) - w}$ is analytic in $D(z_0, r)$. Conclude that then $\lim_{z \to z_0} f(z)$ exists (in $\widehat{\mathbb{C}}$) and so f has a removable singularity or a pole at z_0 .]

- Prove that the image of C by a non-constant entire function is dense in C.
 [Hint: Consider separately the cases when f is polynomial and transcendental (non-polynomial).]
- **3.** Let $P, Q \in \mathbb{C}[z]$ be polynomials with $Q^{-1}(0) \neq \mathbb{C}$ and $\deg(Q) \geq \deg(P) \geq 0$, and let $f(z) = \frac{P(z)}{Q(z)}$ for $z \in \mathbb{C} \setminus Q^{-1}(0)$. Prove that $\operatorname{Res}(f, \infty) = 0$.
- 4. Use Residue Theorem to evaluate the following integrals. Show your work and justify.

(a)
$$\int_{C(0,2)} ze^{3/z} dz$$

(b) $\int_{C(i,2)} \frac{z^3 - 2z}{(z^2 + 4)(10z^{10} - 1)} dz$
(c) $\int_{C(0,2018)} \frac{z^{2018} + 2z^{1009} + 1009z^2}{z^{2018} - 2018} dz$.

5. Suppose $\Omega \subset \mathbb{C}$ is open and contains the upper half-plane $\{z : \operatorname{Im}(z) \ge 0\}$. Let $A = \{a_1, \ldots, a_k\}$ be a finite subset of $\{z : \operatorname{Im}(z) > 0\}$, and let $f \in \mathcal{O}(\Omega \setminus A)$. Suppose further that there are

 $M > 0, R > 0 \text{ and } \alpha > 1 \text{ such that } |f(z)| < \frac{M}{|z|^{\alpha}} \text{ whenever } |z| > R.$ Prove that then the integral $\int_{-\infty}^{+\infty} f(x)dx \left(= \lim_{r \to +\infty} \int_{-r}^{r} f(x)dx \right)$ is convergent and satisfies the formula $e^{+\infty}$

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \cdot \sum_{j=1}^{\kappa} \operatorname{Res}(f, a_j)$$

[Hint: For $r > \max\{R, |a_j| : j = 1, ..., k\}$, consider $\int_{\gamma_r} f(z) dz$ where γ_r is the contour of the upper semi-disc $\{z : |z| \le r, \operatorname{Im}(z) \ge 0\}$ traversed counter-clockwise, and let r tend to $+\infty$.]

6. Use the above to show that if $P, Q \in \mathbb{R}[x]$ satisfy $Q^{-1}(0) \cap \mathbb{R} = \emptyset$ and $\deg(Q) \ge \deg(P) + 2$ then

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \cdot \sum_{j=1}^{k} \operatorname{Res}(\frac{P}{Q}, a_j),$$

where the sum is over all poles of $\frac{P(z)}{Q(z)}$ in the open upper half-plane $\{z : \text{Im}(z) > 0\}$.

7. Evaluate $\int_0^{+\infty} \frac{dx}{(1+x^2)^2}$. Show your work and justify.