Practice Midterm I

- 1. Problems from Problem Sets 1 and 2.
- 2. State definitions of the argument and the principal argument of a non-zero complex number.
- **3.** Find i^i .
- 4. State the definition of a harmonic function and its harmonic conjugate.
- 5. State the definition of an analytic function.
- 6. For each of the following functions v(x, y), find its harmonic conjugate in the right half-plane (if exists) and find a closed form of a function f(z) whose *imaginary* part equals v:
 - (a) $v(x,y) = \arctan \frac{y}{x}$
 - (b) $v(x,y) = 6x^2y 2y^3$
 - (c) $v(x,y) = e^x \cos(iy)$.
- 7. Show that if f = u + iv is \mathbb{C} -differentiable in an open set Ω and u is constant on Ω , then so is f.
- 8. Find the set of those $z \in \mathbb{C} \setminus \{0\}$ for which $\operatorname{Arg}(\overline{z}) = \operatorname{Arg}(z^{-1})$. Justify your answer.
- **9.** Use the Local Isolation of Zeros Theorem to prove that the complex exponential function exp (respectively, sin and cos) is the unique extension to \mathbb{C} of the real exponential function exp (respectively, sin and cos) on \mathbb{R} .
- **10.** Let Ω be a non-empty domain in \mathbb{C} . Prove that if analytic functions $f, g \in \mathcal{O}(\Omega)$ satisfy $f(z) \cdot g(z) = 0$ for all $z \in \Omega$, then at least one of the functions f and g is identically zero on Ω .
- **11.** Let $\Omega \subset \mathbb{C}$ be an open set, let $z_0 \in \Omega$, and let $f : \Omega \to \mathbb{C}$. Prove that f is \mathbb{C} -differentiable at z_0 if and only if there exist r > 0 and a \mathbb{C} -linear function $\varphi : \mathbb{C} \to \mathbb{C}$ such that

$$f(z_0 + h) = f(z_0) + \varphi(h) + o(h),$$

for all $h \in D(0, r)$.