Practice Midterm II

- 1. Problems from Problem Sets 4–6.
- 2. (a) State the Cauchy Integral Formula in the maximal generality you know to hold true.
 - (b) Give one example for necessity of each of the assumptions made in your statement of CIF.
- (a) Let f be analytic in a simply connected domain D ⊂ C, and let γ be a piecewise C¹ simple closed curve in D such that f(ζ) = 0 for all ζ ∈ γ. Prove that f is identically zero on D.
 - (b) Give an example of a *non*-simply connected open set $D \subset \mathbb{C}$, a function $f \in \mathcal{O}(D)$, and a simple closed curve $\gamma \in D$, such that $\int_{\infty} f(\zeta) d\zeta \neq 0$. Justify your answer.
- 4. State the definition of index (winding number) of a piecewise C^1 closed curve with respect to a point.
- **5.** (a) State the definition of a piecewise C^1 simple closed curve in \mathbb{C} .
 - (b) Give an example of a piecewise \mathcal{C}^1 simple closed curve γ for which

$$\int_{\gamma} \frac{z^3 e^{1/z}}{(z^2 + z + 1)(z^2 + 1)} \, dz = 0 \, .$$

Justify your answer.

(c) Let γ be the circle C(0,2) traversed (one time) counter-clockwise. Prove that there exist $k \in \mathbb{Z}_+$ and \mathbb{C}^1 simple closed curves $\gamma_1, \ldots, \gamma_k$ such that the cycle $\Gamma := \gamma - \sum_{j=1}^k \gamma_j$ satisfies

$$\int_{\Gamma} \frac{z^3 e^{1/z}}{(z^2+z+1)(z^2+1)} \, dz \ = \ 0 \, .$$

- 6. Let f be analytic on the unit disc, and assume that $|f(z)| \leq 1$ for |z| = 1/2. Prove that $|f'(0)| \leq 2$.
- 7. Let γ denote the circle C(0, 2) traversed two times counter-clockwise. Evaluate the following integrals. [Hint: Use the Cauchy-Dixon Theorem to represent a given integral as a linear combination of certain simpler integrals.]

(a)
$$\int_{\gamma} \frac{\sin(\pi z)}{z^3 - 1} dz$$

(b)
$$\int_{\gamma} \frac{e^z}{(z^2 + 1)^2} dz$$

(c)
$$\int_{\gamma} \frac{dz}{(z^2 + 2z - 3)^4} dz$$

- 8. Let γ denote the limaçon $r = 2 + 4\cos\theta$ ($\theta \in [0, 2\pi]$) traversed three times counter-clockwise.
 - (a) What is the index of γ with respect to $z_0 = 1$?
 - (b) Evaluate the integral

$$\int_{\gamma} \frac{z^5 + 2z^4 + 3z^3 + 4z^2 + 5z}{z^2 - 1} \, dz \, .$$

- **9.** (a) Give an example of a bounded domain Ω in \mathbb{C} and a piecewise \mathcal{C}^1 closed curve γ in Ω such that $I(\gamma; a) = 5$ for some point $a \in \mathbb{C} \setminus \Omega$.
 - (b) Give an example of a bounded domain Ω in \mathbb{C} and a cycle $\Gamma = \gamma_1 + \cdots + \gamma_s$ (for some $s \in \mathbb{Z}_+$) such that each γ_j is a \mathbb{C}^1 simple closed curve in Ω , no two γ_i, γ_j intersect, and for every $k \in \{1, \ldots, 5\}$ there is a point $a_k \in \mathbb{C} \setminus \Omega$ such that $I(\Gamma; a_k) = k$.