Problem Set 2

January 21, 2024.

1. Exercises 3.9, 3.10.
2. Exercise 4.3.
3. Exercise 4.15 .
4. Let X be a set. Let Δ be the collection of all outer measures on X, and let Λ be the collection of all pairs (\mathcal{N}, μ) such that \mathcal{M} is a σ-algebra on X and μ is a measure on \mathcal{M}. For any $\alpha \in \Delta$, let $\left(\mathcal{M}_{\alpha}, \alpha_{c}\right) \in \Lambda$ denote the pair consisting of α-measurable sets \mathcal{M}_{α} and the measure $\alpha_{c}:=\left.\alpha\right|_{\mathcal{M}_{\alpha}}$. For $(\mathcal{M}, \mu) \in \Lambda$, let $\mu^{0} \in \Delta$ denote the effect of Caratheodory construction on μ. Prove the following:
(a) $\left(\alpha_{c}\right)^{0}=\alpha$ iff α is regular.
(b) $\left(\mu^{0}\right)_{c}=\mu$ iff there exists a regular $\gamma \in \Delta$ such that $\mu=\gamma_{c}$.
(c) If μ is complete and σ-finite, then $\left(\mu^{0}\right)_{c}=\mu$.
(d) For every $\mu \in \Lambda$, we have $\left(\left(\mu^{0}\right)_{c}\right)^{0}=\mu^{0}$.

Remark: In the above problems, equality of measures is understood in the sense of functions; i.e., together with their σ-algebraic domains.

