Problem Set 4

February 4, 2024.

1. Let C be a subset of the $[0,1]$ interval defined as $C=\bigcap_{n=1}^{\infty} C_{n}$, where $C_{1}=\left[0, \frac{1}{5}\right] \cup\left[\frac{2}{5}, \frac{3}{5}\right] \cup\left[\frac{4}{5}, 1\right]$ and, for any $k \geq 1, C_{k+1}$ is obtained from C_{k} by removing the second and fourth open fifths from each of the 3^{k} congruent closed intervals that C_{k} is composed of.
Let m denote the Lebesgue measure in \mathbb{R}. Find $m(C)$ and the Hausdorff dimension of C. Justify your answers.
2. Let C be a subset of the $[0,1]$ interval defined as $C=\bigcap_{n=1}^{\infty} C_{n}$, where $C_{1}=\left[0, \frac{2}{5}\right] \cup\left[\frac{3}{5}, 1\right]$ and, for any $k \geq 1, C_{k+1}$ is obtained from C_{k} by removing the middle open fifth from each of the 2^{k} congruent closed intervals that C_{k} is composed of.
Let m denote the Lebesgue measure in \mathbb{R}. Find $m(C)$ and the Hausdorff dimension of C. Justify your answers.
3. Let $S \subset[0,1]^{2} \subset \mathbb{R}^{2}$ denote the Sierpiński carpet; i.e., $S=\bigcap_{n=1}^{\infty} S_{n}$, where

$$
S_{1}=[0,1]^{2} \backslash\left(\frac{1}{3}, \frac{2}{3}\right)^{2}
$$

and, for any $k \geq 1, S_{k+1}$ is obtained from S_{k} by removing the open middle ninth square from each of the 8^{k} congruent squares of area $\frac{1}{9^{k}}$ that S_{k} is composed of.
Let m denote the Lebesgue measure in \mathbb{R}^{2}. Find $m(S)$ and the Hausdorff dimension of S. Justify your answers.
4. Prove that, for every $n \in \mathbb{Z}_{+}$, the Hausdorff dimension of \mathbb{R}^{n} equals n.
5. For functions f and g on a measure space (X, \mathcal{M}, μ), we say that $f=g$ almost everywhere (a.e., for short), when $\mu(\{x \in X: f(x) \neq g(x)\})=0$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function.
(a) Suppose that $f=g$ a.e. (with respect to Lebesgue measure). Prove that f is Lebesgue measurable.
(b) Suppose now that f is Lebesgue measurable. Prove that there exists a Borel measurable function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=h$ a.e. (with respect to Lebesgue measure).
6. Exercises 5.1-5.3.

NB. For Problems 5 and 6 above, notice that for real-valued functions on a measurable space, the notions of measurability as defined in class and in the textbook coincide.

