Problem Set 4 February 4, 2024.

- **1.** Let C be a subset of the [0, 1] interval defined as $C = \bigcap_{n=1}^{\infty} C_n$, where $C_1 = [0, \frac{1}{5}] \cup [\frac{2}{5}, \frac{3}{5}] \cup [\frac{4}{5}, 1]$ and, for any $k \ge 1$, C_{k+1} is obtained from C_k by removing the second and fourth open fifths from each of the 3^k congruent closed intervals that C_k is composed of. Let m denote the Lebesgue measure in \mathbb{R} . Find m(C) and the Hausdorff dimension of C. Justify your answers.
- **2.** Let C be a subset of the [0, 1] interval defined as $C = \bigcap_{n=1}^{\infty} C_n$, where $C_1 = [0, \frac{2}{5}] \cup [\frac{3}{5}, 1]$ and, for any $k \ge 1$, C_{k+1} is obtained from C_k by removing the middle open fifth from each of the 2^k congruent closed intervals that C_k is composed of. Let m denote the Lebesgue measure in \mathbb{R} . Find m(C) and the Hausdorff dimension of C. Justify your answers.
- **3.** Let $S \subset [0,1]^2 \subset \mathbb{R}^2$ denote the *Sierpiński carpet*; i.e., $S = \bigcap_{n=1}^{\infty} S_n$, where

$$S_1 = [0,1]^2 \setminus \left(\frac{1}{3},\frac{2}{3}\right)^2$$

and, for any $k \ge 1$, S_{k+1} is obtained from S_k by removing the open middle ninth square from each of the 8^k congruent squares of area $\frac{1}{9^k}$ that S_k is composed of. Let *m* denote the Lebesgue measure in \mathbb{R}^2 . Find m(S) and the Hausdorff dimension of *S*. Justify your answers.

- **4.** Prove that, for every $n \in \mathbb{Z}_+$, the Hausdorff dimension of \mathbb{R}^n equals n.
- 5. For functions f and g on a measure space (X, \mathcal{M}, μ) , we say that f = g almost everywhere (a.e., for short), when $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$.

Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function.

- (a) Suppose that f = g a.e. (with respect to Lebesgue measure). Prove that f is Lebesgue measurable.
- (b) Suppose now that f is Lebesgue measurable. Prove that there exists a Borel measurable function $h : \mathbb{R} \to \mathbb{R}$ such that f = h a.e. (with respect to Lebesgue measure).
- **6.** Exercises 5.1–5.3.

NB. For Problems 5 and 6 above, notice that for *real*-valued functions on a measurable space, the notions of measurability as defined in class and in the textbook coincide.