Problem Set 8 March 17, 2024.

- **1.** Exercise 12.1.
- 2. Exercise 12.3.
- **3.** Exercise 12.4.
- **4.** Exercise 12.6.
- **5.** Exercise 12.7.
- **6.** Let (X, \mathcal{M}) be a measurable space.
 - (a) Prove that the collection of all complex measures on (X, \mathcal{M}) is a complex vector space (with addition and scalar multiplication defined as $(\mu + \lambda)(E) := \mu(E) + \lambda(E)$ and $(c \cdot \mu)(E) := c \cdot \mu(E)$, for $E \in \mathcal{M}$).
 - (b) Let M(X) denote the complex vector space of all complex measures on (X, \mathcal{M}) . Prove that the function defined as $\|\mu\| := |\mu|(X)$ is a norm on M(X).