Problem Set 9

March 24, 2024.

For the exercises in Problem 1, let μ be a positive measure on a measurable space (X, \mathcal{M}) , and let functions $f_n, f: X \to \mathbb{R}$ be \mathcal{M} -measurable. We say that the sequence (f_n) converges in measure to f, when for every $\varepsilon > 0$

$$\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) - f(x)| > \varepsilon\}) = 0.$$

1. Exercises 10.1–10.5.

- **2.** Suppose $\lambda, \lambda_1, \lambda_2$ are measures on a σ -algebra \mathcal{M} , and μ is a positive measure on \mathcal{M} . Prove the following statements:
 - (a) If λ is concentrated on a set $A \in \mathcal{M}$, then so is $|\lambda|$.
 - (b) If $\lambda_1 \perp \lambda_2$, then $|\lambda_1| \perp |\lambda_2|$.
 - (c) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $(\lambda_1 + \lambda_2) \perp \mu$.
 - (d) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $(\lambda_1 + \lambda_2) \ll \mu$.
 - (e) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
 - (f) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 \perp \lambda_2$.
 - (g) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda \equiv 0$.