

Problem Set 1
 due: January 26, 2026.

All numbered exercises are from the textbook *Real analysis for graduate students*, R.F. Bass, ver.3.1, 2016 (available through the course website).

1. Let X be a non-empty finite set, and let \mathcal{A} be a σ -algebra on X . Consider a relation on X :

$$x \sim y \iff [x \in A \Leftrightarrow y \in A, \text{ for all } A \in \mathcal{A}] .$$

- (i) Show that the above is an equivalence relation on X .
- (ii) Show that, for every $x \in X$, its equivalence class satisfies $[x]_\sim = \bigcap\{A \in \mathcal{A} : x \in A\}$ and $[x]_\sim \in \mathcal{A}$.
- (iii) Let E_1, \dots, E_k be all the distinct equivalence classes in X modulo \sim . Show that \mathcal{A} consists precisely of the empty set and unions of all sub-collections of $\{E_1, \dots, E_k\}$ (i.e., $A \in \mathcal{A}$ iff $A = \emptyset$ or there exist $1 \leq l \leq k$ and $\{i_1, \dots, i_l\} \subset \{1, \dots, k\}$ such that $A = E_{i_1} \cup \dots \cup E_{i_l}$).

2. Exercise 2.5.

3. Exercise 2.7.

4. Let $\mathcal{M} = \{A \subset \mathbb{R} : |A| \leq \aleph_0 \text{ or } |A^c| \leq \aleph_0\}$, and let $\mu : \mathcal{M} \rightarrow \{0, 1\}$ be a function defined as $\mu(A) = 0$ when $|A| \leq \aleph_0$, and $\mu(A) = 1$ when $|A^c| \leq \aleph_0$. Prove that \mathcal{M} is a σ -algebra in \mathbb{R} and μ is a measure on \mathcal{M} .

5. Let $X = \mathbb{R}$ and let $\mu^* : \mathcal{P}(X) \rightarrow \{0, \frac{1}{2}, 1\}$ be a function defined as $\mu^*(A) = 0$ when $|A| \leq \aleph_0$, $\mu^*(A) = \frac{1}{2}$ when $|A| > \aleph_0$ and $|A^c| > \aleph_0$, and $\mu^*(A) = 1$ when $|A^c| \leq \aleph_0$.

- (a) Prove that μ^* is an outer measure on \mathbb{R} , which is not a measure.
- (b) Find the σ -algebra of μ^* -measurable sets. Justify your answer.

6. Prove that every measure space admits a unique completion (Exercise 3.8).

7. Exercise 3.9.

Practice Problems (not to be submitted):

- 8.** Exercises 2.2, 2.3, 2.4, 2.6, 2.8.
- 9.** Exercises 3.1, 3.2, 3.4, 3.5, 3.6, 3.7, 3.10.