Problem Set 1

due: February 1, 2019.

1. Let X be a non-empty finite set, and let \mathcal{A} be a σ -algebra on X. Consider a relation on X:

 $x \sim y \iff [x \in A \Leftrightarrow y \in A, \text{ for all } A \in \mathcal{A}]$.

- (i) Show that the above is an equivalence relation on X.
- (ii) Show that, for every $x \in X$, its equivalence class satisfies $[x]_{\sim} = \bigcap \{A \in \mathcal{A} : x \in A\}$ and $[x]_{\sim} \in \mathcal{A}$.
- (iii) Let E_1, \ldots, E_k be all the distinct equivalence classes in X modulo \sim . Show that \mathcal{A} consists precisely of the empty set and unions of all sub-collections of $\{E_1, \ldots, E_k\}$ (i.e., $A \in \mathcal{A}$ iff $A = \emptyset$ or there exist $1 \le l \le k$ and $\{i_1, \ldots, i_l\} \subset \{1, \ldots, k\}$ such that $A = E_{i_1} \cup \cdots \cup E_{i_l}$).
- **2.** Let $\mathcal{M} = \{A \subset \mathbb{R} : |A| \leq \aleph_0 \text{ or } |A^c| \leq \aleph_0\}$, and let $\mu : \mathcal{M} \to \{0, 1\}$ be a function defined as $\mu(A) = 0$ when $|A| \leq \aleph_0$, and $\mu(A) = 1$ when $|A^c| \leq \aleph_0$. Prove that \mathcal{M} is a σ -algebra in \mathbb{R} and μ is a measure on \mathcal{M} .
- **3.** Let $X = \mathbb{R}$ and let $\mu^* : \mathcal{P}(X) \to \{0, \frac{1}{2}, 1\}$ be a function defined as $\mu^*(A) = 0$ when $|A| \leq \aleph_0$, $\mu^*(A) = \frac{1}{2}$ when $|A| > \aleph_0$ and $|A^c| > \aleph_0$, and $\mu^*(A) = 1$ when $|A^c| \leq \aleph_0$.
 - (a) Prove that μ^* is an outer measure on \mathbb{R} , which is not a measure.
 - (b) Find the σ -algebra of μ^* -measurable sets. Justify your answer.
- 4. Exercises 2.2, 2.5, 3.4, and 3.6 from the text.
- 5. Prove that every measure space admits a unique completion (Exercise 3.8).