Problem Set 2

due: February 15, 2019.

- 1. Let X be a set. Let Δ be the collection of all outer measures on X, and let Λ be the collection of all pairs (\mathcal{M}, μ) such that \mathcal{M} is a σ -algebra on X and μ is a measure on \mathcal{M} . For any $\alpha \in \Delta$, let $(\mathcal{M}_{\alpha}, \alpha_c) \in \Lambda$ denote the pair consisting of α -measurable sets \mathcal{M}_{α} and the measure $\alpha_c := \alpha|_{\mathcal{M}_{\alpha}}$. For $(\mathcal{M},\mu) \in \Lambda$, let $\mu^0 \in \Delta$ denote the effect of Caratheodory construction on μ . Prove the following:
 - (a) $(\alpha_c)^0 = \alpha$ iff α is regular.
 - (b) $(\mu^0)_c = \mu$ iff there exists a regular $\gamma \in \Delta$ such that $\mu = \gamma_c$.
 - (c) If μ is complete and σ -finite, then $(\mu^0)_c = \mu$.
 - (d) For every $\mu \in \Lambda$, we have $((\mu^0)_c)^0 = \mu^0$.

NB: Here, equality of measures is understood in the sense of functions; i.e., together with their σ -algebraic domains.]

- **2.** Exercises 4.6 and 4.7 from the text.
- **3.** (a) Show that every Vitali set $V \subset [0, 1]$ has positive Lebesgue outer measure.
 - (b) Prove that for every $\epsilon > 0$, there exists a Vitali set V_{ϵ} satisfying $0 < m^*(V_{\epsilon}) < \epsilon$.
 - (c) Prove that for every Lebesgue measurable set $A \subset V$, we have m(A) = 0.

4. Let $C \subset [0,1]$ denote the ternary Cantor set (i.e., $C = \bigcap_{n \in I} C_n$, where $C_0 = [0,1], C_1 = [0,\frac{1}{3}] \cup C_1$ $\left[\frac{2}{3},1\right]$, and C_{n+1} is obtained from C_n by removing the open middle thirds from all the closed

intervals whose union constitutes C_{n} .) Find the Lebesgue measure of C. Justify your answer.

- **5.** Prove that if $A \subset \mathbb{R}$ is Lebesgue measurable and m(A) > 0, then A contains a Lebesgue nonmeasurable set.
- **6.** Exercise 4.17 from the text.
- 7. Recall that, for $p \in [0, \infty)$, the *p*-dimensional Hausdorff outer measure on a metric space (X, d)is defined by

$$h^{p^*}(Y) = \sup_{\delta > 0} \inf \left\{ \sum_{k=1}^{\infty} h^p(Y_k) \mid \{Y_k\}_{k=1}^{\infty} \subset \mathcal{P}(X), Y \subset \bigcup_k Y_k, \operatorname{diam}(Y_k) < \delta, \forall k \right\},\$$

for $Y \subset X$, where $h^p(Z) = \frac{\alpha(p)}{2^p} \operatorname{diam}(Z)^p$ for $Z \neq \emptyset$, $h^p(\emptyset) = 0$, and $\alpha(p) = \frac{(\Gamma(\frac{1}{2}))^p}{\Gamma(\frac{p}{2}+1)}$. For $\delta > 0$, denote by h^p_{δ} the function on $\mathcal{P}(X)$ defined by

$$h^p_{\delta}(Y) = \inf \left\{ \sum_{k=1}^{\infty} h^p(Y_k) \mid \{Y_k\}_{k=1}^{\infty} \subset \mathcal{P}(X), Y \subset \bigcup_k Y_k, \operatorname{diam}(Y_k) < \delta, \forall k \right\}.$$

By the Caratheodory Extension Theorem, h^p_{δ} is an outer measure on X. Prove that, for every $Y \subset X$, the function $(0, \infty) \ni \delta \mapsto h^p_{\delta}(Y) \in [0, \infty]$ is decreasing. Prove that h^{p^*} is an outer measure on X.