Problem Set 4 due: April 8, 2019.

- **1.** Exercise 12.1.
- **2.** Exercise 12.3.
- **3.** Exercise 12.5.
- **4.** Exercise 12.7.
- **5.** Let (X, \mathcal{M}) be a measurable space.
 - (a) Prove that the collection of all complex measures on (X, \mathcal{M}) is a complex vector space (with addition and scalar multiplication defined as $(\mu + \lambda)(E) := \mu(E) + \lambda(E)$ and $(c \cdot \mu)(E) := c \cdot \mu(E)$, for $E \in \mathcal{M}$).
 - (b) Let M(X) denote the complex vector space of all complex measures on (X, \mathcal{M}) . Prove that the function defined as $\|\mu\| := |\mu|(X)$ is a norm on M(X).
- **6.** Suppose $\lambda, \lambda_1, \lambda_2$ are measures on a σ -algebra \mathcal{M} , and μ is a positive measure on \mathcal{M} . Prove the following statements:
 - (a) If λ is concentrated on a set $A \in \mathcal{M}$, then so is $|\lambda|$.
 - (b) If $\lambda_1 \perp \lambda_2$, then $|\lambda_1| \perp |\lambda_2|$.
 - (c) If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then $(\lambda_1 + \lambda_2) \perp \mu$.
 - (d) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $(\lambda_1 + \lambda_2) \ll \mu$.
 - (e) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
 - (f) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 \perp \lambda_2$.
 - (g) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda \equiv 0$.
- 7. Use Problem 6 to prove the uniqueness of Lebesgue decomposition (of a complex measure λ relative to a positive σ -finite measure μ) in part (1) of the Radon-Nikodym Theorem stated in class.