
MEASURE THEORY LECTURE NOTES

JANUSZ ADAMUS

XI. Complex Measures

Definition 1. Let M be a σ-algebra on a set X. A complex measure on M is a
complex-valued function µ :M→ C satisfying

(1) µ(
⋃
n

En) =
∑
n

µ(En) ,

for every denumerable collection {En}n of pairwise disjoint elements of M.

Remark 2. 1. It follows from the definition that µ(∅) = 0. Indeed, we have
∅ = ∅ t ∅ and hence µ(∅) = 2µ(∅), which in light of µ(∅) ∈ C implies
µ(∅) = 0.

2. Since the left side of (1) is a complex number, it follows that the series
on the right side of (1) is always convergent. Moreover, the sum of the
series is independent of the ordering of the sets En, and hence the series is
absulutely convergent.

Example 3. The following is a model example of a complex measure. By the
Radon-Nikodym Theorem below, all complex measures arise in this way modulo a
set of measure zero.

Let (X,M, µ) be a σ-finite measure space, and let h : X → C be an integrable
function. (Recall that a complex-valued function f = u + iv, where u and v are
real-valued, is called integrable when both u and v are integrable as real-valued
functions. In this case, one defines

∫
f :=

∫
u+ i

∫
v.) Then, the function ν :M→

C defined as

(2) ν(A) :=

∫
A

h dµ

is a complex measure. The proof is an elementary exercise.

Definition 4. Let µ : M → C be a complex measure on a σ-algebra M. The
function |µ| :M→ R defined as

|µ|(E) := sup{
∞∑
n=1

|µ(En)| : {En}n ⊂M, E =

∞⋃
n=1

En, Ej ∩ Ek = ∅ for j 6= k}

is called the total variation measure of µ.

Remark 5. Observe that we always have |µ|(A) ≥ |µ(A)|, for every A ∈M.
Indeed, the family {A,∅,∅, . . .} forms a measurable partition of A, and hence

|µ|(A) ≥ |µ(A)|+
∞∑
n=2

|µ(∅)| = |µ(A)| .
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Exercise 6. For a signed measure µ on a σ-algebra M, one defines the total
variation measure of µ as |µ| := µ+ +µ−, where µ+ and µ− are the unique positive
measures from the Jordan Decomposition Theorem for µ. Note that a real-valued
(i.e., finite) signed measure µ may be regarded as a complex measure. Prove that
if µ is a real-valued signed measure, then the two definitions of |µ| coincide.

Theorem 7. The total variation |µ| of a complex measure µ on a σ-algebra M is
a positive measure on M.

Proof. Let {En}∞n=1 ⊂M be an arbitrary collection of pairwise disjoint measurable
sets. Set E :=

⋃
nEn. We want to show that

|µ|(E) =

∞∑
n=1

|µ|(En) .

To this end, for every n ∈ Z+, choose an arbitrary real number tn satisfying
|µ|(En) > tn. Then, by definition of |µ|, there exists for every n a measurable
partition {Ank}∞k=1 of En such that

∑∞
k=1 |µ(Ank)| ≥ tn. Since the (countable)

family {Ank}∞n,k=1 forms a partition of E, we get that

|µ|(E) ≥
∞∑

n,k=1

|µ(Ank)| =
∞∑
n=1

( ∞∑
k=1

|µ(Ank)|

)
≥
∞∑
n=1

tn .

(Note that above we used the absolute convergence of the series in question to
rearrange its terms without altering the sum.)
Taking supremum over all sequences (tn)∞n=1 as above, we get

|µ|(E) ≥
∞∑
n=1

|µ|(En) .

For the proof of the opposite inequality, let {Ak}∞k=1 ⊂ M be another arbitrary
partition of E. Then, for every k, {Ak ∩ En}∞n=1 is a measurable partition of Ak,
and for every n, {Ak ∩ En}∞k=1 is a measurable partition of En. Thus, again by
absolute convergence, we get

∞∑
k=1

|µ(Ak)| =
∞∑
k=1

∣∣∣∣∣
∞∑
n=1

µ(Ak ∩ En)

∣∣∣∣∣ ≤
∞∑
k=1

( ∞∑
n=1

|µ(Ak ∩ En)|

)

=

∞∑
n=1

( ∞∑
k=1

|µ(Ak ∩ En)|

)
≤
∞∑
n=1

|µ|(En) .

Taking supremum over all countable measurable partitions {Ak}k of E, we get
|µ|(E) ≤

∑∞
n=1 |µ|(En). This proves countable additivity of |µ|.

The equality |µ|(∅) = 0 follows from µ(∅) = 0 and the fact that the only
countable measurable partition of ∅ consists of copies of ∅. �

Perhaps even more interestingly, the total variation of any complex measure is
a finite positive measure, as the following theorem shows.

Theorem 8. If µ is a complex measure on a measurable space (X,M), then the
total variation measure |µ| satisfies |µ|(X) < +∞.

We shall first establish an auxiliary lemma, which is a somewhat surprising
complex analysis result of independent interest.
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Lemma 9. Given any collection {z1, . . . , zN} of (not necessarily pairwise distinct)
N complex numbers, there exists an index subset S ⊂ {1, . . . , N} such that∣∣∣∣∣∑

n∈S
zn

∣∣∣∣∣ ≥ 1

π
·
N∑
n=1

|zn| .

Proof. For 1 ≤ n ≤ N , let αn ∈ (−π, π] be such that zn = |zn|eiαn . For ϑ ∈ [−π, π],
let

S(ϑ) := {n ∈ {1, . . . , N} : cos(αn − ϑ) > 0} .
Then,

|
∑

n∈S(ϑ)

zn| = |e−iϑ| · |
∑

n∈S(ϑ)

zn| = |
∑

n∈S(ϑ)

e−iϑzn| ≥ Re

 ∑
n∈S(ϑ)

|zn|ei(αn−ϑ)


=

∑
n∈S(ϑ)

|zn| cos(αn − ϑ) =

N∑
n=1

|zn| cos+(αn − ϑ) ,

where, as usual, cos+ = max{cos, 0}.
Now, choose ϑ0 ∈ [−π, π] so as to maximize the latter sum, and set S := S(ϑ0).

By the Mean Value Theorem for Riemann integral, we have

N∑
n=1

|zn| cos+(αn − ϑ0) ≥ 1

2π

∫ π

−π

(
N∑
n=1

|zn| cos+(αn − ϑ)

)
dϑ ,

and hence

|
∑
n∈S

zn| ≥
1

2π

∫ π

−π

(
N∑
n=1

|zn| cos+(αn − ϑ)

)
dϑ

=

N∑
n=1

(
|zn| ·

1

2π

∫ π

−π
cos+(αn − ϑ) dϑ

)
=

N∑
n=1

(|zn| ·
1

π
) =

1

π
·
N∑
n=1

|zn| ,

where the penultimate equality follows from the fact that cos+ is periodic with
period 2π, and hence

∫ π
−π cos+(αn − ϑ) dϑ = 2 independently of the choice of

αn. �

Proof of Theorem 8. Suppose first that, for some E ∈ M, we have |µ|(E) = +∞.
Set t := π(1 + |µ(E)|). (Of course, t < +∞, since µ is a complex measure.)

Since |µ|(E) = +∞, then by definition of |µ| there exist a measurable partition
{En}∞n=1 of E and a positive integer N such that

N∑
n=1

|µ(En)| > t .

Applying Lemma 9 with zn := µ(En), we conclude that there is a measurable set
A ⊂ E (namely, the union of some of the E1, . . . , EN ) such that

|µ(A)| > t

π
≥ 1 .

Moreover, for B := E \A, we also have

|µ(B)| = |µ(E \A)| = |µ(E)− µ(A)| ≥ |µ(A)| − |µ(E)| > t

π
− |µ(E)| = 1 .
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We thus have E = A tB, with |µ(A)| > 1 and |µ(B)| > 1. By additivity of |µ|, at
least one of the A,B must be of infinite |µ|-measure.

Now, if |µ|(X) = +∞, we construct recursively an infinite sequence (An)∞n=1 ⊂
M of pairwise disjoint sets with |µ(An)| > 1 for all n, as follows: By the first
part of the proof, we can partition X into A1 and B1 such that |µ(A1)| > 1 and
|µ|(B1) = +∞. Having defined A1, . . . , Ak and B1, . . . , Bk, partition Bk into Ak+1

and Bk+1 such that |µ(Ak+1)| > 1 and |µ|(Bk+1) = +∞.
Then, by additivity of µ, we have µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An). In particular, the

series
∑∞
n=1 µ(An) is absolutely convergent. Hence, by the Basic Divergence Test,

lim
n→∞

|µ(An)| = 0, contradicting the choice of the An. �

Exercise 10. (a) Show that if µ, ν are complex measures on a σ-algebra M,
then so are µ+ ν and c · µ for any c ∈ C (where (µ+ ν)(E) = µ(E) + ν(E)
and (cµ)(E) = c · µ(E) for E ∈ M). Therefore the set of all complex
measures on M forms a complex vector space.

(b) Prove that the function ‖µ‖ := |µ|(X) defines a norm on that vector space.

Absolute Continuity.

Definition 11. Let µ be a positive measure on a σ-algebra M, and let λ be an
arbitrary measure onM. We say that λ is absolutely continuous with respect to µ,
and write λ� µ, when λ(E) = 0 for all E ∈M with µ(E) = 0.

For the following proposition, recall that a (positive, signed, or complex) measure
µ is said to be concentrated on a measurable set A, when µ(E) = 0 for every
measurable E ⊂ Ac.

Proposition 12. Suppose λ, λ1, λ2 are arbitrary measures on a σ-algebra M, and
µ is a positive measure on M. Then:

(i) If λ is concentrated on A ∈M, then so is |λ|.
(ii) If λ1⊥λ2, then |λ1|⊥|λ2|.

(iii) If λ1⊥µ and λ2⊥µ, then (λ1 + λ2)⊥µ.
(iv) If λ1 � µ and λ2 � µ, then (λ1 + λ2)� µ.
(v) If λ� µ, then |λ| � µ.

(vi) If λ1 � µ and λ2⊥µ, then λ1⊥λ2.
(vii) If λ� µ and λ⊥µ, then λ ≡ 0.

Proof. (i) Supposed first that λ is a signed measure. By the Hahn and Jordan
decomposition theorems, there exist a set E ∈M and positive measures λ+, λ− on
M all such that λ = λ+ − λ−, λ+ is concentrated on Ec, and λ− is concentrated
on E. Let then B ∈M∩P(Ac) be arbitrary. We have

λ+(B) = λ+(B ∩ E) + λ+(B ∩ Ec) = 0 + λ+(B ∩ Ec)
= −λ−(B ∩ Ec) + λ+(B ∩ Ec) = λ(B ∩ Ec) = 0 ,

since B ∩ E ⊂ E and B ∩ Ec ⊂ Ec ∩Ac. Similarly,

λ−(B) = λ−(B ∩ E) + λ−(B ∩ Ec) = λ−(B ∩ E) + 0

= λ−(B ∩ E) + (−λ+(B ∩ E)) = −λ(B ∩ E) = 0 .

Thus, |λ|(B) = λ+(B) + λ−(B) = 0.
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Now, suppose λ is a complex measure. Let B ∈ M ∩ P(Ac) be arbitrary, and
let {Bn}∞n=1 be an arbitrary measurable partition of B. Then, for each n, Bn ⊂ Ac
and hence λ(Bn) = 0. Consequently,

∑∞
n=1 |λ(Bn)| = 0. Since the {Bn} were

arbitrary, we get |λ|(B) = 0.

Property (ii) follows directly from (i) and definition of ’mutually singular’.

For the proof of (iii), choose A1, B1, A2, B2 ∈ M such that B1 = Ac1, B2 = Ac2,
λ1 is concentrated on A1, λ2 is concentrated on A2, and µ is concentrated on B1

as well as on B2. The latter property means that µ is concentrated on B1 ∩ B2.
Indeed, for any measurable E ⊂ (B1∩B2)c, we have E = E1∪E2 with Ei = E∩Bci ,
and hence 0 ≤ µ(E) ≤ µ(E1) + µ(E2) = 0 + 0. Since λ1 + λ2 is concentrated on
A1 ∪A2, the result follows.

Property (iv) is trivial.

For (v), suppose first that λ is a signed measure, and let E ∈M and λ+, λ− be
as in the proof of (i). Let B ∈ M be such that µ(B) = 0. Then, by monotonicity
of µ, µ(B ∩ E) = 0 = µ(B ∩ Ec) as well. Since λ� µ, we get

λ+(B) = λ+(B ∩ E) + λ+(B ∩ Ec) = 0 + λ+(B ∩ Ec)
= −λ−(B ∩ Ec) + λ+(B ∩ Ec) = λ(B ∩ Ec) = 0 ,

and

λ−(B) = λ−(B ∩ E) + λ−(B ∩ Ec) = λ−(B ∩ E) + 0

= λ−(B ∩ E) + (−λ+(B ∩ E)) = −λ(B ∩ E) = 0 ,

and hence |λ|(B) = λ+(B) + λ−(B) = 0.
Now, suppose λ is a complex measure. Let B ∈ M be an arbitrary set with

µ(B) = 0, and let {Bn}∞n=1 be an arbitrary measurable partition of B. Then, for
each n, Bn ⊂ B, hence µ(Bn) = 0 and so λ(Bn) = 0. Consequently,

∑∞
n=1 |λ(Bn)| =

0. Since the {Bn} were arbitrary, we get |λ|(B) = 0.

Proofs of properties (vi) and (vii) are left as an exercise. �

We finish this section with a statement of a complex-measure version of the
Radon-Nikodym theorem. The proof will be covered in an in-class presentation.

Theorem 13 (Radon-Nikodym). Let µ be a positive σ-finite measure on a σ-algebra
M on X, and let λ be a complex measure on M. Then:

(i) There is a unique pair (λa, λs) of complex measures on M such that

λ = λa + λs, λa � µ, λs⊥µ.
Moreover, if λ is positive finite, then so are λa and λs.

(ii) There is a unique (a.e.) integrable function h : X → C such that

λ(E) =

∫
E

h dµ for all E ∈M.

Definition 14. The pair (λa, λs) is called the Lebesgue decomposition of λ relative
to µ.
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