Mathematics 9607B Winter 2025

Problem Set 3 March 9, 2025.

1. Let X be a k-dimensional analytic subset of a manifold M, and let, for every $d \in \mathbb{N}$,

$$X^{(d)} = \{x \in X : \dim_x X = d\}.$$

Prove the following:

- (a) $X^{(k)}$ is an analytic subset of X (in particular, closed!).
- (b) For every $d \in \mathbb{N}$, $\overline{X^{(d)}}$ is analytic of pure dimension d. Moreover,

$$X = X^{(k)} \cup X^{(k-1)} \cup \dots \cup X^{(0)} = X^{(k)} \cup \overline{X^{(k-1)}} \cup \dots \cup \overline{X^{(0)}}$$

- (c) For every $d = 1, \dots, k$, $\bigcup_{i < d} X^{(i)}$ is open in X.
- (d) For every $d=1,\ldots,k,$ $X\setminus\bigcup_{i< d}X^{(i)}$ is analytic in X.
- **2.** Let X and $X^{(d)}$ be as above. Give, as explicit as possible, a characterization of $X^{(d)}$ ($d = 0, \ldots, k$) in terms of components of Reg(X).
- 3. Prove Proposition 8.8 and Remark 8.13(1) from Lecture Notes.
- **4.** (a) [Hartshorne, Ex.II.1.2(c)] Show that a sequence of sheaves on a topological space X is exact iff, for every $\xi \in X$, the corresponding sequence of stalks at ξ is exact.
 - (b) Use part (a) to conclude that a morphism of sheaves $\alpha : \mathcal{F} \to \mathcal{G}$ is injective (resp. surjective) iff α_{ξ} is so for every $\xi \in X$.
- 5. [Hartshorne, Ex.II.1.3]
 - (a) Let $\alpha : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that α is surjective iff the following condition holds: for every open $U \subset X$, and for every $t \in \mathcal{G}(U)$, there is an open covering $\{U_i\}_i$ of U, and sections $s_i \in \mathcal{F}(U_i)$, such that $\alpha(U_i)(s_i) = t|_{U_i}$ for all i.
 - (b) Give an example of a surjective morphism of sheaves $\alpha: \mathcal{F} \to \mathcal{G}$, and an open set U, such that $\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is not surjective.
- **6.** [Hartshorne, Ex.II.1.19] (Extending a sheaf by zero) Let X be a topological space, let Z be a closed subset, let $U = X \setminus Z$, and let $i: Z \to X$ and $j: U \to X$ be the inclusions.
 - (a) Let \mathcal{F} be a sheaf on Z. Show that the stalk $(i_*\mathcal{F})_x$ of the direct image sheaf on X is \mathcal{F}_x if $x \in Z$, and 0 if $x \notin Z$.
 - (b) Now let \mathcal{F} be a sheaf on U. Let $j_!(\mathcal{F})$ be the sheaf on X obtained as a sheafification of the presheaf $\{V \mapsto \mathcal{F}(V) \text{ if } V \subset U, \ V \mapsto 0 \text{ otherwise}\}$. Show that the stalk $(j_!(\mathcal{F}))_x$ is equal to \mathcal{F}_x if $x \in U$, and 0 if $x \notin U$, and show that $j_!(\mathcal{F})$ is the only sheaf on X which has this property, and whose restriction to U is \mathcal{F} .
- 7. Prove Corollaries 8.28 and 8.33 from Lecture Notes.