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1 Preliminaries

Some notation:
o N=1{0,1,2,...}; N, = N\ {0}.
e Givenreal 7 > 0and k € N, 7A* = {(21,...,2,) € CF : || < r}.
o C°={0}.

1.1 Complex manifolds

Definition 1.1. Given open subset Q C C", a continuous function f : Q — C is called holomorphic
in Q (or simply, holomorphic) when, for every z = (z1,...,z,) € Q, there is a positive radius r and
a sequence (¢, )y ene C C, such that

f(z) = Z cy(z—x) forall z€ax+rA™,
veNn

Un

where (z — )" = (21 —x1)" ... (2n — Tn)
A mapping f = (f1,...,fm) : @ = C™ is a holomorphic mapping when all its components are
holomorphic functions.

Definition 1.2. Let m € N. A complex manifold of dimension m is a nonempty Hausdorff space M
together with a complex atlas A = {(Uq, ¥a)}aca satisfying:

(i) U, nonempty and open in M for all o € A

(ii) @q : Uy — C™ homeomorphism onto a region (open connected subset) in C™ for all « € A

(i) Unea Un = M

(iv)

Two atlases on M are said to be equivalent when their union is an atlas itself. An equivalence class

of all equivalent atlases is called a (complex) structure on M. A coordinate chart is any pair (U, ¢)
such that {(U,¢)} U A is an atlas. In particular, the (U,, ¢q) are coordinate charts.

v) pgo0att a(Ua NUg) — ps(U, NUg) is holomorphic for all o, 3 € A.

Remark 1.3. It is sometimes convenient to treat the empty set as a manifold. It is, by definition, of
dimension —1.

Definition 1.4. Given manifolds M and N and an open 2 C M, a continuous mapping f : Q — N is
called holomorphic when, for every pair of charts (U, ¢) on M and (V, 1) on N such that f(UNQ) C V,
the composite

Yo folpluna)™t:o(UNQ) = (V)
is holomorphic. We write f € O(Q, N).
Remark 1.5.
(1) Given a nonempty manifold M and a nonempty open subset € in M, € is itself a manifold and
dim 2 = dim M. We call it an open submanifold of M. The structure is that restricted from M,

that is, the equivalence class of the atlas {U, N Q, 0ol ta where A = {(Uy, va)}aca is an atlas
on M.
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(2) For n € N, we regard C™ as a manifold equipped with the canonical complex structure induced
by the identity mapping.

(3) When N = C, we write O(Q2) for O(12,C). Pointwise addition and multiplication of functions
define a commutative ring structure on O(2). In fact, after identifying C with the constant
functions, O(Q) is a C-algebra. If Q is conneted, then it follows from the Identity Principle
below, that O(f2) is an integral domain: For f # 0 in O(Q), the set f~1(0) is nowhere dense in
Q, hence fg vanishes on 2 only if f or g does so.

Definition 1.6. A subset N of an m-dimensional manifold M is called a submanifold of dimension
n < m when, for every point £ € N, there is a coordinate chart (U, ¢) on M such that £ € U and

NNU=¢ *{z=(21,...,20m) €EC™ : 2y = =, = 0}).

Of greatest interest to us will, in fact, be the submanifolds of C™. One easily proves the following
useful characterisation of such submanifolds:

Proposition 1.7. A subset M C C™ is an m-dimensional submanifold of C™ if and only if M is
locally (at every point & € M) a graph of a holomorphic function; that is, for every & € M there is
an m-dimensional linear subspace L C C™, open neighbourhoods V of wp,(§) in L and W of mp1(§) in
L+, and a holomorphic f : V — W, such that

MnN (V X W) = Ff,
where I's denotes the graph of f.

Theorem 1.8 (Identity Principle). Let M and N be complex manifolds, and let M be connected.
Suppose f,g € O(M,N), and there is a nonempty open subset Q@ C M such that flo = gla. Then
f=g

Proof. Put D = {{£ € M : flw = g|lw for some open neighbourhood W of £}. Then D is open
and nonempty. We will show that D is also closed, which in light of connectedness of M will imply
D= M. Let £ € D. Then f(£) = g(&), by continuity of f and g. Let (U, ) and (V,) be coordinate
charts on M and N respectively, such that £ € U, f(¢) € V, and f(U)Ug(U) C V. Then tpo fop!
and ¥ o go =t agree on (D NU). Since DN U is a nonempty open subset of U, it follows from the
Identity Principle for holomorphic functions in C™ that 1o f oo~ and 1) o go ¢! agree on p(U).
Thus f|y = g|u, and hence ¢ € D, as required. O

Definition 1.9. Let M and N be complex manifolds, of dimensions m and n respectively, and let
& € M. For a holomorphic mapping f : M — N, the rank of f at the point £, denoted rk¢ f, is defined
as the rank of the Jacobi matrix [8F

S

Jj=1,...m

where F = (Fy,...,F,) = Yo flrop ™t : oU) — ¢(V), and (U,¢), (V,1)) are coordinate charts
around ¢ and f(&) respectively, such that f(U) C V.

The definition is independent of the choice of charts (Exercise). We say that the mapping f :
M — N is of constant rank r when rk,f = r for all x € M. We have the following classical result
(see, e.g., [Lo, C.4.1] for the proof):

Theorem 1.10 (Rank Theorem). Let f : M — N be a holomorphic map of constant rank r, and
let £ € M. Then there exist coordinate charts (U, ) and (V,v) in M and N respectively, such that
EeU, flU)CV, and o fly o™t is a linear map of rank r. Moreover, f(U) is an r-dimensional
submanifold of N, and nonempty fibres of f|y are (m — r)-dimensional submanifolds of M.
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1.2 Set and function germs

Definition 1.11. Let X be a topological space, and £ € X. Consider the following equivalence
relation on P(X):

A ~¢ B & thereis an open nbhd U of £ st. ANU =BNU.

The elements of the quotient space P(X)/ ~¢ are called the set germs at {. The equivalence class of
A is denoted A¢, and A is a representative of Ae.

Remark 1.12.
(1) We say that A¢ C B¢ when A C B for some representatives A and B of A¢ and By respectively.

(2) Finite set-theoretical operations commute with taking a germ at a point; e.g., AeUBg = (AUB)g,
Ag N Be = (AN B)e. We define the product of germs as A¢ X B = (A X B)(¢ ) (the definition
is independent of the representatives chosen, Exercise).

(3) Ac#£ 2 & (e A.
(4) Representatives of X, are precisely those sets A C X that satisfy £ € intA.

Definition 1.13. Let X be a topological space, £ € X, and let F(X,{) be the collection of all
complex-valued functions (U, f) with domain U an open neighbourhood of £. Consider the following
equivalence relation on F(X,¢):

(U, f) ~¢ (V,g) & there is an open nbhd W of ¢ st. flw = g|lw .

The elements of the quotient space F (X, &)/ ~¢ are the function germs at . The equivalence class
of (U, f) is denoted f¢, and (U, f) is a representative of fe.

Remark 1.14.

(1) The following are well-defined (i.e., independent of the choice of representatives, Exercise):

fetge = (f£9)e, fe-9¢ = (f9)e, and fe/ge = (f/g)¢ provided g is non-zero in a neighbourhood
of &.

2) We say that the function germ fe vanishes at a set germ Ag, and write fe|4, = 0, when some
g 3 g 3 §lAg
representative (U, f) of fe vanishes on ANU, where A is a representative of Ag.

(3) Warning! The “image” f¢(A¢) is in general not well-defined (Exercise).

1.3 Dimension

Definition 1.15 (Topological Dimension). Let M be an m-dimensional complex! manifold, and let
A C M. We define the (topological) dimension of A as dim@& = —1 and

dim A = max{dim N : N submanifold of M, N C A}
otherwise. For £ € M, the dimension of A at the point £ is defined as

dim¢g A = min{dim(ANU) : U open nbhd of £}.

I1We will not mention the word complex again; all manifolds considered will be complex, unless otherwise specified.
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One easily verifies (Exercise) the following:

Proposition 1.16. Given a subset A of a manifold M, the function
M>z v~ dim,AcZ

is upper semi-continuous; that is, for every & € M there is an open neighbourhood U such that
dim, A < dim¢ A for allz € U.

Definition 1.17. Let M be a manifold, £ € M, and E a germ at £. We define the dimension of the
germ E as dim E = dim¢ A, where A is a representative of E at &.
(The above proposition guarantees that the definition is independent of the choice of representative.)

Remark 1.18.

(1) For a subset A of an m-dimensional manifold, we have dim A = m iff intA # @. Similarly
dim A¢ = m iff intA # & for every representative A of Ag.

(2) In particular, dim A < m if A is nowhere dense.
(3) A C B implies dim A < dim B. Similarly, A¢ C B¢ implies dim A < dim Be.

(4) If AC M and B C N, then
dim(A x B) =dim A+ dim B.

The inequality “ > 7 is clear, and the opposite one follows from the Rank Theorem 1.10 via the

proposition below.

Proposition 1.19. Let M, N be manifolds, let m : M x N — M be the canonical projection, and let
ECMxN. Ifdim7=1(2) <k for all z € ©(E), then dim E < k + dim w(E).

Proof. Let T' be a nonempty submanifold of E and let £ € I’ be a point at which the rank of 7|p :
I' - M is maximal. Then |r is of constant rank in a neighbourhood of £ in I' (by Example 2.5(5)
and Theorem 2.7 below), so by the Rank Theorem, there is an open neighbourhood T’y of ¢ in I’
such that m(Ty) is a submanifold of M, and nonempty fibres of «|r, are submanifolds of dimension
r =dim Ty — dim 7w (T), which is at most k, by assumption. Hence

dimT = dim Ty = dim7w(Tg) + r < dim7(Ty) + k < dim#(E) + &,

and thus dim £ = max{dimI : I" C F a submanifold of M x N} <k + dim7(E). O
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2 Analytic sets

2.1 Analytic sets

Definition 2.1. Let 2 be an open subset of a complex manifold M. A set X is called an analytic
set in €2 when, for every £ € 2, there is an open neighbourhood U of £ in €2 and a finite collection of
holomorphic functions hy,...,hs € O(U) such that

XNU={xcU:hi(x)=-=hsx) =0} = h;*(0)N---Nh;1(0).

X is called locally analytic in Q2 when there are a neighbourhood U and functions hq,...,hs as above
for every £ € X (but not necessarily for £ € Q\ X).

Remark 2.2.

(1) Since an open subset of a manifold is a manifold itself, we can simply speak of [locally] analytic
subsets of manifolds.

(2) X is analytic in Q iff X is locally analytic and closed in €.

(3) Every locally analytic set X in € is analytic in some open U C € (for instance, in Q\ (X \ X)).
X \ X is called the frontier of X.

Example 2.3. X = {(z,y) € C?: |z|> +|y|> < 1} is locally analytic and not analytic in C?: for every
€€ X, XNU=h"10), for U an open disc centered at ¢ and contained in X, and h = 0.

Remark 2.4. One also defines globally analytic sets (but these will be of no interest to us): X is
globally analytic in M when there is a finite collection of holomorphic functions hq,...,hs € O(M)
such that X = {z € M : hy(z) = -+ = hy(x) = 0}.

Example 2.5.
1. The union of a collection of some connected components of a manifold M is analytic in M.
2. A closed submanifold N of M is analytic in M.

3. An algebraic subset of C™ (i.e., the locus of common zeros of a collection of polynomials in n
complex variables) is globally analytic in C™.

4. Nonempty proper analytic subsets of C (and, in general, of one-dimensional manifolds) are
precisely the sets of isolated points without an accumulation point. Locally analytic subsets are
the sets of isolated points (e.g., {1/n:n € N, }).

5. Let f: M — N be a holomorphic mapping of manifolds, and let k& € N. Then the set
{reM:rk,f <k}

is analytic in M. Exercise.
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2.2 Basic topological properties
Union

If {Xx}aea is a locally finite family of analytic subsets of a manifold M, then J,., X is analytic in
M. Notice that even finite unions of locally analytic sets need not be locally analytic.

Example 2.6. Consider the union of the set X of Example 2.3 and the singleton Y = {(1,0)} (Y is
in fact globally analytic) in C2. Then X UY does not satisfy the definition of local analycity at the
point (1,0) (by the Identity Principle).

Intersection

A finite intersection of [locally] analytic subsets of a manifold M is [locally] analytic in M itself.
In fact, arbitrary intersections of [locally] analytic sets are [locally] analytic, as we will show later
(Theorem 7.11).

Cartesian product

If X (resp. X3) is [locally] analytic in a manifold M; (resp. M), then X; x X5 is [locally] analytic
in M1 X MQ.

Inverse image

If ¢ : M — N is a holomorphic mapping of manifolds, and Y is [locally] analytic in N, then ¢~1(Y)
is [locally] analytic in M.

Complement

Theorem 2.7. Let M be a connected manifold, and let X be a proper analytic subset of M. Then
M\ X is an open, arcwise connected, dense subset of M.

Proof. Openness is clear. For the proof of density, suppose that M\ X is not dense, so that D := int X
is not empty. We will show that D = D, and hence D = M, a contradiction. Let £ € dD. Then £ € X,
as X is closed, and so there exists an open neighbourhood U of £ and functions hy,...,hs € O(U)
such that X NU = {z € U : hy(x) = --- = hy(x) = 0} # &. Then hq,...,hs all vanish on DNU,
which by the Identity Principle implies h; =0 (i = 1,...,s), D N U being nonempty and open in U.
Therefore X NU = U, and hence £ € D, as required.

To prove that M \ X is arcwise connected, suppose first that (U, ¢) is a coordinate chart in M.
Without loss of generality, we may assume that U is an open ball in C". Let a,b be two points in
U\ X, and let L be a complex line through a and b. Then, by Example 2.5(4), X N"U N L is a set
without accumulation points in L N U, and hence a and b can be joined by an arc in U \ X. In the
general case, M being arcwise connected, for any two points a and b in M \ X, we can find an arc
v :[0,1] = M with (0) = @ and v(1) = b. Then « has a finite cover by coordinate charts (Uj, ¢;)
(j=1,...,s) such that a € Uy, b € Us, and every U; \ X is arcwise connected, open and dense. We
can thus patch an a — b arc in M \ X from finitely many pieces. O
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2.3 Regular and singular points

Definition 2.8. Let X be an analytic subset of a manifold M. A point £ € X is called regular (or
smooth), and X is called regular (or smooth, or non-singular) at &, when £ has an open neighbourhood
U in M such that X NU is a submanifold of M. The set of regular points of X is denoted by reg X
(or X™&, or X [Lo], or X~ [Wh]).

The set X \ regX is denoted by sngX (or X®"¢, or X* [Lo|, or X* [Wh]), and called the singular
locus (or the set of singular points) of X.

Example 2.9.

1. For X = {(z,y) € C?: zy = 0}, we have sngX = {0} (not a graph of a function at 0 - fails the
vertical line test).

2. For X = {(z,y) € C?: 2% = y3}, also sngX = {0} (unlike in the real case, not a function at 0).
3. For X = {(z,y,z) € C3: 2y = 0}, sngX = {0} x C.

4. If f: M — N is a biholomorphism, X analytic in M, then £ is a regular (resp. singular) point
of X iff f(€) is regular (resp. singular) for f(X).

Proposition 2.10. If X is an analytic subset of a one-dimensional manifold M, then regX = X.

Proof. Let £ € X and let U be a connected neighbourhood of £ on which there live hy,...,hs € O(U)
such that X NU = h7*(0)N---NA;Y(0). If XNU = U, then £ € regX. If, in turn, X NU ¢ U, then
by Example 2.5(4), X NU is a set of isolated points. Thus, after shrinking U, if needed, X NU = {£}
is a 0-dimensional manifold in M, so £ € regX again. O

Theorem 2.11. Let X be an analytic subset of a manifold M. Then regX is open and dense in X.

Proof. The openness is clear. We prove density by induction on m = dim M. The case m = 1 is
done above, so let’s assume the statement holds for m — 1, and consider an analytic set X in an m-
dimensional manifold M (m > 1). Let £ € X. We will show that an arbitrarily small neighbourhood
U of ¢ in M intersects regX. Let U be an open neighbourhood of &, small enough so that there exist
hi,...,hs € O(U) for which X N\U = h;(0)N---Nh;1(0). Without loss of generality, we may assume
that U is a domain of a coordinate chart, and hence that U is a connected open subset of C™.

Now, if X NU = U, then £ € regX, so we may assume that X N U & U. Then at least one of
the functions hq, ..., hs doesn’t vanish identically on U; say, h; #Z 0. By the Identity Principle, there

lex|

h
exists a multiindex o« € N™ such that (88 !
T

- ) (§) # 0. Hence there exist a point n € X NU, a

multiindex 8 € N™ and 1 < j < m for which

9181 hy o [9Plp,
=0 d — | —% 0.
08 | vru o oz ( OxP >(7)) 7
: : : .0 (9P ,
Then, in some coordinate neighbourhood V' C U of 7, the function 97 \ 528 is never 0. Put
€y xr v

g =0%lhy/828. Then g € O(V), and as dg/dz; is never zero on V, g~*(0) is an (m — 1)-dimensional
submanifold of V. But XNV C ¢~1(0), as g|x~y, = 0, and so by the inductive hypothesis, V N g~*(0)
(and hence U itself) contains regular points of X. O
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2.4 Principal analytic sets

Definition 2.12. An analytic subset X of a manifold M is called [locally] principal when it is [locally]
the zero set of a single function h, which doesn’t vanish identically on any connected component of
M.

Theorem 2.13. Let X be a locally principal analytic subset of an m-dimensional manifold M. Then
X is of pure dimension m — 1.

Proof. Since intX = &, by Theorem 2.7, it follows that dim, X < m — 1 at every z € X. To prove
the opposite inequality, it suffices to show that regX is an (m — 1)-dimensional submanifold of M.
Consider N a connected component of regX. We have dim N = k < m — 1. Suppose k < m — 1,
and let £ € N. Then there exists a complementary submanifold 7" in (a neighbourhood of £ in) M,
of dimension m — k > 2, such that NNT = {¢}. Let h € O(U) be such that X NU = h~1(0) for
some small neighbourhood U of £&. Then 1/h € O(UNT \ {¢}) and the singleton {¢} is of codimension
at least 2 in U NT. Therefore, by Hartogs’ Lemma (see [Lo, C.1.11]), 1/h € O(U N T), and hence
h(&) # 0; a contradiction. O

2.5 Irreducible analytic sets

Definition 2.14. An analytic subset X of a manifold M is called reducible when there exist nonempty
analytic proper subsets X1, X5 of X such that X = X; U X5. Otherwise X is called irreducible.

Proposition 2.15. Let f : M — N be a holomorphic mapping of manifolds, let X be analytic in M
and such that Y = o(X) is analytic in N. Then, if X is irreducible, then so is Y.

Proof. Suppose Y = Y, UY5 for some nonempty analytic Y; # Y (j = 1,2). Then f~1(Y;) are analytic
in M, X = X0 f4Y) = (X0 ) U(X N F (), and X — X 1 1Y) £ X 0171
(j = 1,2); a contradiction. O

Example 2.16.
1. X = {zy = 0} is reducible.

2. X = {2? = ¢} is irreducible, by Proposition 2.15, as the image of (irreducible) C under the
parametrisation C > ¢ — (¢3,¢2) € C2.

Proposition 2.17. Let N be a closed submanifold of a manifold M. Then N is an irreducible analytic
subset of M iff N is connected.

Proof. Suppose that N is connected and X; and X5 are nonempty analytic subsets of M, such that
X1 UXy = N. By Theorem 2.7, for j = 1,2, either X; "N = N or else it is a nowhere-dense subset
of N. By the Baire’s Category Theorem, IV is not a union of two nowhere-dense subsets, and hence
one of the X; NV is not a proper subset of NV.

If, in turn, a closed submanifold N is not connected, let X; be a component of N and let X5 be
the union of its remaining components. Then X; and X5 are analytic in M (by Example 2.5(1),(2)),
nonempty proper subsets of N, and N = X; U Xo. O
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3 Hironaka division

3.1 Hironaka division theorem

We will be interested in division in C[[z]] and C{xz}, where z = (1, ..., %) is a system of m complex
variables. Recall that C[[x]] is the ring of formal power series, and C{z} its subring of convergent
power series in z. We will, in fact, consider more general coefficient rings than C, namely A = C[[y]]/]
or C{y}/I, where I is a proper ideal, and y = (y1,...,yn). Rings of the latter type are called local
analytic C-algebras. By definition, if A = C[[y]]/I (resp. C{y}/I), then

_ Clly, ] ‘ _ Hy,a}
Allz]] = m (resp. A{z} = m )-

Let H € A[[z]]. We write H = Z hgmﬂ7 where 3 = (B1,...,0m) € N, 2 = xfl ...xPnand
BEN™

hﬁEx&

Lexicographic ordering of the (m + 1)-tuples

OBLﬁh'“aﬁm)a

where || = 1+ -+ Bm, defines a total ordering of N (or, equivalently, of all the monic monomials
2% € C[[z]]). This can be extended to a total ordering p of the monomials h-z* € A[[x]] (see below).

The mapping C[[y]] — C of evaluation at 0 induces an evaluation mapping
A—C, h(y) — h(0),

and hence
Allx]] = C[[z]], H = Z hgxﬁ — H(0) = Z h/g(O)xﬁ.
BeN™ BEN™

Given H = 3" hga?, define the support of H
supp(H) = {# € N" : hg £ 0},

the initial exponent of H
exp,, (H) = min, {5 : 8 € supp(H)},

where the minimum is taken with respect to the total ordering u, and the initial form of H as
in, (H) = hgoz”’ h 0 — H
" = hgoz” where f° = exp,(H).

Similarly, define supp(H(0)) = {8 € N : hg(0) # 0}, exp(H(0)), and in(H(0)).

Given G; = Zﬂ ggmﬂ € Al[z]], i =1,...,t, consider the following partition of N™:
Put 3 = exp(G;(0)), i =1,...,t, and let

Ay =B+ N and A= (B +N™)\ U A; forl<i<t.
1<j<i

Finally, let
A=N"\ | a;.

1<j<t
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Next, we want to define a total ordering of all the “monomials” h-2? € A[[x]], suitable for our
choice of Gy, ..., Gy above. Let m = m,, denote the maximal ideal of C[[y]] = C[[y1,...,¥ys]]. If h € A,
the order of h, denoted v(h), is defined as the largest v € N such that h € (m” +1)/I; v(h) = +oo if
h € I. Consider the coefficients g’ﬁ7 of the Gy, i = 1,...,t, where 3° = exp(G;(0)). Since géi (0) # 0,
they are all invertible elements of A, and hence without loss of generality, we may assume that ng =1,
i=1,...,t. Forl €N, we define a y;-ordering of monomials in A[[z]], by lexicographic ordering the
(m + 1)-tuples

puh-a?) = (-v(h) + B, Br, ., Bm)

Lemma 3.1. There exists | € N such that m(xﬂi) < m(g%xﬂ) whenever 3 < B¢, i=1,...,t. (For
such I, we have exp,, (G;) = exp(G;(0)), i = 1,...,t).

Proof. We want to have |5| < I-v(g}) + || whenever 8 < . Notice that, for such 3, v(gj) > 0
(by the choice of 3%). Therefore, if |3] = |3¢|, any positive [ will do. If, in turn, || < |8¢|, we need
1> (|8 = 18])/v(g}). Since there is only finitely many such 3’s, we may choose [ € N such that

1< min min M
U=t \Ipl<isi 1B — 1Bl )

O

Example 3.2. Let G(y,z1,22) = yr1+z1205+eYx3. Then G(0) = 123 +23, hence exp(G(0)) = (1,2)
(the lexicographic minimum of (1,2) and (3,0)). The exponent at x of the monomial yz; is (1,0) and
the order of its coefficient h(y) = y is 1. The other (infinitely many) monomials of G are negligable,
since each of them has the exponent at  equal to (3, 0), which is strictly greater than (2,1). Therefore
we need to choose [ so that

3=(2,1)|<l-1+](1,0)|=1+1.
Thus | = 3 will do.

Theorem 3.3 (Hironaka Division). Let F,G1,...,Gy € A[[z]], let 8¢ = exp(G;(0)) and A, A; be as
above. Then there exist unique Q1,...,Q R € A[[z]] such that

t
F=) QGi+R,

i=1

where B+ supp(Q;) C A; and supp(R) C A.

Proof. First assume that A = C. For the proof of uniqueness, suppose > Q;G; + R=> Q.G; + R'.
Then > (Q; — Q))G; = R’ — R, and the initial exponents of the left and right hand side (if not zero)
belong to disjoint regions of N, which is impossible. Hence @Q; = Q@ (i =1,...,t) and R’ = R.

Now for the division algorithm: By collecting all terms of F' divisible by ! (and factoring out of

them 27"), then all of the remaining terms divisible by " (and factoring out of them z#°), and so
on until no such term remains, we get respectively Q1 (F),...,Q:(F), and R(F) € C[[z]] such that

t
F = ZQi(F)xBi + R(F), where "+ supp(Q;(F)) C A; and supp(R(F)) C A.

i=1
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Hence also exp(Q;(F)) > exp(F) — 3%, and exp(R(F)) > exp(F).
Put E(F) =F -3 Qi(F)G; — R(F); ie.,

F)=Y"QiF)(=" - Gy).

exp(E(F)) = min{exp(Qi(F)-(@” — G1))} > min{exp(Qi(F)-2")} > exp(F),

where the equality holds because these summands of FE(F) are supported in disjoint regions of N,

Then

and the strict inequality follows from the fact that in(G;) = 27 .
Now, as for F before, there exist Q;(E(F)), ¢ =1,...,t, and R(FE(F)) such that

E(F) = ZQZ(E(F))Z"B + R(E(F)), where 8° + supp(Q;(E(F))) C A; and supp(R(E(F))) C A.

i=1

As before, we get exp(Q;(E(F))) > (E( )) — B¢, and exp(R(E(F))) > exp(E(F)).
Put E2(F) = E(F) - 3 Qi(E (F)) — R(E(F)); ie.,

= QuEF) (" - G;).

Then
exp(B*(F)) = min{exp(Qu(B(F))-(x" — G1))} > min{exp(@u(E(F))-+”)} > exp(E(F).

And so on... Having defined Q;(E*(F)) and R(E*(F)) for all k € N, let

Qi =Y Qi(E*(F)) and R=Y R(E*F)), (3.1)
k=0 k=0

where EO(F) = F and E*1(F) = E(E*(F)) as above.

Now, B° + supp(Q;) C A; and supp(R) C A, because 3 + supp(Q;(E*(F))) C A; and
supp(R(E*(F))) C A for all k € N. Moreover, the two series in (3.1) converge in Krull topology
of C[[z]], as

exp(Qi(E*(F))) > exp(E"(F)) — 8" > exp(E*"1(F)) — f'
and  exp(R(E*(F))) > exp(E*(F)) > exp(E*}(F)).

Finally,
t l 1
F=3 (Z Qz(Ek(F))> Gi— (Z R(E’f(F))) -
=1 \k=0 k=0
F=2 Q)G = RIP)| - ) QuB(NG: + RIE(F)) | ... [Z Qu(E\(F))G;i + R(E'(F))| =
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since limy_,o0 exp(E'1(F)) = co. Therefore F = Y, Q;G; + R.

Now, for general A = CJ[[y]]/I, taking ! as in Lemma 3.1 above, we complete the proof of Theo-
rem 3.3 with the y;-ordering: The initial form of G; with respect to this ordering is still xﬂi, since
v(1) = 0. The algorithm is the same as before; the uniqueness and (Krull) convergence arguments are
also the same, using the new ordering: eXpM(Qi(F)mBi) > exp,, (F), exp, (R(F)) > exp,, (F), and
exp,, (xﬁi — G;) > exp,, (G;), by the choice of [, so

exp,, (E(F)) > miin{expm (QZ(F)(xB - Gy)) > exp,, (F).

For the convergent version of Hironaka’s division theorem, we need the following p—o-norms:

Ifh=h(y)= > hay® € A=C{y}/I, put
aeNn?

17l = Z hal-plol, where p > 0,

aeNn

and, for H = Z hgzﬂ € A{z}, put
ﬁeNrn

IHll, , = Z Hhﬁup'aw, where o > 0.
BEN™

Remark 3.4. Tt follows directly from the definition that, for p,c > 0 and arbitrary Hy, Hy € A[[z]],

(1) [HiHzl, , < [Hill, o1 H2ll, o

p,o —

(2) [Hy + Hal, , < [[Hill, , + | Hal

po =

with equality if supp(H;) Nsupp(Hs) = .

po’

Moreover, it is not difficult to verify the following

Proposition 3.5. Let H = Y hga? € A[[x]]. Then H € A{x} iff there exist positive p and o such
that ||H|[, , < 0.

Proof. Indeed, if H= Z hgx? € Al[x]], where hg = Z hPy*, then H € A{z} iff there is a positive

BeEN™ a€eNn
M such that |h2| € O(MIIF18]) for all o« € N™ and 8 € N™. The proposition follows easily (Exercise).
O
Theorem 3.6 (Convergent Hironaka Division). Under the notation of the previous theorem,
if F,G1,...,Gy € A{z}, then the unique Q1,...,Q¢, R are also convergent.
Proof. We will first show that there exists a ¢ > 0 such that there is a p > 0 for which
g L s ;
Ha? -G, <-o for i=1,...,t. (3.2)
po 2
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For this, consider the series Z Hgé“p,-a‘m_‘ﬁil. We can choose p’ > 0 so that it is a convergent

18>8
power series in ¢. As the series vanishes for ¢ = 0, one can choose o > 0 small enough so that
il Lgle-1s < 1
> llgbll, o <7 (33)
181>18%1

For this choice of o, we claim there exists 0 < p < p’ such that

S llgbl, 0P < 1 (3.4)

1B1<|8%|

e

Indeed, the sum is finite, and since gj(0) = 0 for all 3 satisfying |3| < |8°|, we have lim, o Hg%” =0
P
Combining (3.3) and (3.4) we get (3.2).

and ||G I, i=1,...,t are

By Proposition 3.5, we may now choose o, p > 0, such that ||F|| o

p,o?
all finite, and (3.2) holds. Divide F' as in the proof of Theorem 3.3: F' = ZQl mﬁ + R(F). By

=1

Remark 3.4(2),
¢
1o = D NQiE), o0+ IRE),, -
i=1

Hence, by (3.2),
t
1
B0 < 3 1P 50 < 5 171,

One shows recursively that

HQi(Ek(F))HPVJ < U—\BiI_HEk(F H < 7U—|l3 [ ahall

p,o — 9k p,o

and HR(Ek(F))HW < HE’“(F)HP,J <o IFl,.

Therefore -
1Qill,., Zik LR, =20 LR
and -
18], <> o5 IFN,, =21Fl,,
k=0
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3.2 Weierstrass preparation theorem

Definition 3.7. Let f(z,w) € C{z,w} = C{z1,...,2m,w}. We say that f is regular of order d in w
when f(0,w) = ¢(w)-w? with ¢(0) # 0. We say that f is reqular in w, if it is regular of order d in w
for some d.

Theorem 3.8 (Weierstrass Division Theorem). Suppose f(z,w) € C{z,w} (resp. C[[z,w]]) is
regular of order d in w, and let g(z,w) € C{z,w} (resp. Cl[z,w]]). Then there exist unique
q(z,w) € C{z,w} (resp. C[[z,w]]) and r;(z) € C{z} (resp. C[[2]]) (j =1,...,d) such that

d
g(z,w) = q(z,w)- f(z,w) + er(z)-wd_j .

Proof. We apply Theorem 3.6 (resp. 3.3) with A = C{z}, m =1, F =g,t =1, and G; = f. Since
in(f(0)) = p(0)w?, then A} =d+ N, A ={0,1,...,d — 1}, and

d
g(sz) = q(z7w)-f(z,w) + ZTj(Z)-wd_j .

d
Let P(z,w) = w' + Zaj(z)qud*j € C{z}[w] (resp. C[[z]][w]). We say that P is a distinguished
j=1
polynomial of degree d when a;(0) =0, j=1,...,d.

Theorem 3.9 (Weierstrass Preparation Theorem). If f(z,w) € C{z,w} (resp. Cl[[z,w]]) is regular
of order d in w, then there exist a distinguished polynomial P(z,w) € C{z}{w] (resp. C[[z]][w]) of
degree d, and q(z,w) € C{z,w} (resp. C[[z,w]]) such that

q(0,0) #0 and f=qP.
Moreover, P and q are uniquely determined by these conditions.

Proof. By Theorem 3.8,
w? = h(z,w)-f(z,w) + er(z)%ud*j .
j=1
Put z =0 to get

d
w? = h(0,w) - (aw? + higher order terms ) + Z 75(0)- w7 |
j=1

where a # 0. The left hand side contains no terms of order less than or greater than d in w, therefore
7;(0) = 0, and h(0,0) #0. Put g=h' and P = w? — Z?:l ri(z) wid. O
As yet another application of Hironaka Division, we get

Theorem 3.10 (Implicit Function Theorem). Let F(y,z) = (Fi(y,x),...,Fn(y,x)), where y =
Y1y Yn), & = (T1,...,Tm), and each F;(y,z) € C{y,z} (resp. C[ly,x]]). Assume F(0,0) = 0,

oF
and 3—(0,0) is invertible. Then there exists a unique x = z(y) € C{y}™ (resp. C[y]]™), such that
z
2(0) =0 and F(y,z(y)) = 0.
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F

Proof. We can assume %(0,0) = [ is the identity matrix. Fix 1 < j < m, and apply Theorem 3.6
x

(resp. 3.3) with G; = F;, i=1,...,m, and F = z;. Then in(G;(0)) = z;, so A = {0}, and we get

‘TJ:Zgzj(yax)FZ(y7x)+hj(y)v ]:Lvm
=1

Then G = [g;;] is invertible; in fact, G(0,0) = I. Indeed, put (y,z) = (0,0) to see that h;(0) = 0,

oF
and then differentiate with respect to xz, at (0,0), to get I = G(0,0) - 3 (0,0). We therefore have

X

F(y,l’) = G(yax)il(w - h(y))7 where h(y) = (hl(y)a cey hm(y)) O

3.3 Diagram of initial exponents

Definition 3.11. Let I be an ideal in A[[z]] = A[z1,...,2m]], where A = C[[y]] = Cl[y1,--.,Yn]]-
The diagram of initial exponents of I, denoted as (1), is a subset of N defined as

N(I) = {exp(H): H € I\ {0}}.

Remark 3.12. M(I) + N™ = 9(]), since [ is an ideal: exp(H-z7) = exp(H) + v for H € A[[z]] and
veN" If I ¢ C{y}{z}, then N(I) = N(I-C[[y]][[]]), so we can assume that I C C[[y]][[=]]-

Lemma 3.13. Suppose 9 € N™ and M+ N™ = 9. Then there is a smallest finite subset V. of N
such that M=V + N"™. We call V the vertices of N.

Proof. We proceed by induction on m. The case m = 1 is clear. For m > 1, let V denote the set of
points 8 € N such that
M\ {B}) +N™ # 9.

It’s easy to see that V is a set of vertices of 91. To show that V is finite, it suffices to show that, for
each 7, the set

{ﬁi:ﬁ:(ﬁlw-'aﬁiw"aﬁm)ev}

is bounded. Consider, for example, 3,,: By the inductive assumption, the projection of N onto Nm—1
has finitely many vertices a'

,o..,a% Over every of = (ad,...,a’ ), there is some 37 € V in the
sense that

» “m—1

B = (a{, cee, ozfn_l,ﬁfq'l) .
On the other hand, every other 8 = (B1,...,8y,) € V must satisfy 8, < max{8},...,3s}, for
otherwise 8 € 47 + N™ for some j. O

Corollary 3.14. Let I be an ideal in C{z} or C[[z]], where x = (z1,...,%m). Let N(I) be the diagram
of initial exponents of I, and let 37, j = 1,...,t, denote the vertices of M(I). Choose G1,...,Gy € I
so that exp(Gj) = 37, j =1,...,t, and let {A, Ay, ..., A} be the decomposition of N™ determined by
the 37, as before. Then:

(1) N(I) =, Aj, and the G; generate I.

(2) There is a unique set of generators Fi,...,Fy of I, such that, for each j, in(F;) = 28 and
supp(F; — 2%) C A.
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We call Fy, ..., F; the standard basis of I.

Proof. (1) Let B = C{xz} or C[[z]] as the case may be. By Theorems 3.3 and 3.6, any F' € B can be
written as F = ), Q;G;+ R, where supp(R) C A. Then F' € I'iff R € I. But, as supp(R) C N™\N(I),
Reliff R=0.

(2) For each j = 1,...,t, divide el by G1,...,Gy: 2 = ZQ{Gi + R7, where supp(R’) C A.
K3

Put F; = 2% — RJ. O
Corollary 3.15. The rings C[[z1,...,zn]] and C{z1,..., 2} are noetherian.
Proof. By Corollary 3.14, every ideal in C[[z]] or C{z} is finitely generated. O

Corollary 3.16. Every ring of the form Al[z]] or A{xz}, where A = C[[y]]/I or A = C{y}/I, is
noetherian.

Proof. Homomorphic images of noetherian rings are noetherian. O

Recall that Nakayama’s Lemma implies that, if M is a finitely generated module over a local ring
(A,m), then M/m-M is a finite-dimensional vector space over A/m. The converse is not true in
general! Consider, e.g., A = Cly|,), B = Cly,](y+) and M = B/(y* + 2*> + 2®)-B. Then M/(y)-M
is a finite-dimensional C-vector space, but M is not finitely generated as an A-module (Exercise).
Nonetheless, the converse of Nakayama’s Lemma does hold in the category of local analytic algebras.
This also is a straightforward consequence of Hironaka’s division theorem.

Theorem 3.17 (Weierstrass Finiteness Theorem). Let A be a local analytic C-algebra and let I be
an ideal in A{z}, where x = (x1,...,2my). Then A{z}/I is a finitely generated A-module if and only
if dime(C{z}/1(0)) < co.

Proof. If A{z}/I is finitely generated over A, then dim¢(C{z}/1(0)) = dimc(A{x}/I®@4A/m4) < o0,
by Nakayama’s Lemma. Conversely, suppose that dim¢(C{z}/I(0)) < co. Let G1,...,G; be represen-
tatives of the vertices of the diagram DM(1(0)); i.e., G1, ..., Gy € I are such that exp(G,(0)) = 37, where
B, ..., Bt are the vertices of M(1(0)). Let {A, Aq,..., A} be the decomposition of N determined by
the B1,..., 3%, Then, by Theorem 3.6, for every F' € A{x}, there are Q1,...,Q, R € A{x} such that
F = 23:1 Q;G; + R and supp(R) C A. On the other hand, the condition dim¢(C{z}/I(0)) < oo
means that A consists of finitely many points, say, v',...,v*. Thus every R € A{z} with supp(R) C A
is generated over A by the monomials 27, ...,27" . Hence, modulo I, every F € A{z} is generated
over A by those finitely many monomials, which completes the proof. O
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4

4.1

Janusz Adamus

Rings of germs of holomorphic functions

Basic properties

Definition 4.1. Let M be an m-dimensional manifold, and let a € M. Consider the set of holomorphic
functions

Hol, = {f € O(U) : U open neighbourhood of a in M},

with the equivalence relation: (V, f) ~ (W,g) iff f[lU = g|U for some open U C V N W containing
a. The set Hol,/~ of germs at a of holomorphic functions in M forms a commutative ring, denoted
O (or Oy (M), called the ring of holomorphic germs at a.

Remark 4.2. We list first a few simple observations (M is an m-dimensional manifold and a € M
throughout):

(1)

(2)

(7)

If M =C™, O, := Ocm  is the ring of holomorphic germs at 0 € C™. (We identify Oy = Oco o
with C.) By abuse of notation, z; will be used also to denote the germ {z +— z;}o € O,
j=1...,m.

O contains C as a subring (after identifying C with the germs at a of constant functions).
Om,q is thus a C-vector space, and its ideals are C-vector subspaces.

If ¢ is a holomorphic mapping of an open neighbourhood of a into a manifold N, then the
mapping
¥o ON,Lp(a) > ftp(a) = (fopla € OM,a

is a ring homomorphism. Moreover, if ¢ is a biholomorphism of open neighbourhoods of a and
©(a), then ¢} is an isomorphism (Exercise). In particular, Opsq = Op,.

Taylor expansion at 0 € C™ defines an isomorphism

1 918lf

Om = fO — Z fﬂxﬁ (S C{Jﬁ}, where f,@ = E W .

BGN’"L
We can thus identify the ring Oy, (and in general Oy ,) with C{z}, where z = (x1,...,Zpm).

We will often identify Oy, k < m, with the subring of O,, of germs of functions independent of
variables 41, ..., Tm, via the monomorphism Oy, 3 fo — (fom)g € O, where w(x1, ..., 2m) =
(z1,...,2k) is a canonical projection. Hence, after the identifications,

C=0ycCc0O,Cc---CcO,,.

The isomorphisms Oy, = O, = C{z} imply that, for every germ f € Ous,q, we have well-

defined
- 18] 18] £
f@)=fa) ad Lo (8 ! ) ,

oxh oxP
where f is a representative of f at a.

f € On,q is invertible in O, iff f(a) # 0. Hence Oy, is a local ring, with the maximal ideal

m=m, ={f € On,q: fla) =0}.
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(8) The germs z; € Oy, are irreducible (j =1,...,m).
Indeed, for otherwise x|y = f(z)|v - g(z)|v for some open neighbourhood U of 0 in C™ and
0 0
fyg € O(U) with f(0) = g(0) = 0. Then 1 = 67(1‘])(0) = 87(fg)(0) =0, by the product
J J

rule.

Proposition 4.3. The ring O, is noetherian.
Proof. Follows from the isomorphism Oy, = C{z} and Corollary 3.15. O
Proposition 4.4. The ring Opq s a regular local ring and dim Opr,q = m.

Proof. Again, by Remark 4.2(4), it suffices to prove the statement for C{z}, where z = (x1,...,Zy).
We have dim C{z} > m, as

0) & (21) & (z1,22) & -+ G (21,0, Tm)

is a chain of prime ideals of length m. (That (x1,...,x) are prime follows from the isomorphism
C{z1,...,zm}/(z1,...,2r) = C{z1,...,m—_r} and Proposition 4.6 below.) On the other hand,
a power series f € C{z} is not invertible iff the constant term of f is zero. Thus, the unique

maximal ideal m of C{x} can be generated by m elements 1, ..., Z,,, and so the embedding dimension
dimgm/m? of C{z} equals m. This completes the proof, since a local ring (R,mp) is regular iff
dim R = edimR (and one always has dim R < edimR). O

Proposition 4.5. Germs fi,..., fm € On,q generate mq if and only if their differentials dg f1,. ..,
do fm are linearly independent (over C).

Proof. Tt suffices to prove the claim for O,,:

Consider a natural epimorphism ¢ : m > f + dof € (ToC™)* = C™. Notice that ker p = m?, and
hence m/m? =2 C™. By Nakayama’s Lemma and Proposition 4.4, fi,. .., f, generate m iff their classes
fi,--., frn modulo m? generate m/m?2. Identifying f; with ¢(f;) = dof;, we obtain the result. O

Proposition 4.6. The ring Op,q s an integral domain.

Proof. Indeed, if f,g € O \ {0}, then there is a coordinate neighbourhood U of a, and representa-
tives f,§ € O(U) of f and g respectively, such that f # 0 and § # 0 on U. Then {f§ =0} = {f =
0} U{g = 0}, as a proper analytic subset, is nowhere dense in U, by Theorem 2.7. Hence fg # 0, and
thus fg = (fg)a # 0. O

Proposition 4.7. Every non-constant germ f € O,, with f(0) = 0 is regular (after a linear change
of coordinates, at worst) with respect to some xj.

Proof. We will show that a non-constant f € m is x,,-regular after a suitable linear change of coordi-
nates.

Write f(z) = >, ey fu(@), where fu(z) =375, fs2P is a form of degree v. The assumptions f € m
and f # const imply that there exists r € Ny such that f,.(z) # 0 and fx(z) =0 for all £ < r. Then
f =, f.(x). Let U = €A™ be a polydisc on which f is convergent. Then A := {f, = 0} is a
proper analytic subset of U. Pick z € U \ A; after a linear change of coordinates at 0 € C™, we may
assume that z = (0,...,0,1). In the new coordinates,

FO,,0,0) = f(z-2m) = Y ful(2)at,

is regular of order r in x,,. O
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Remark 4.8. In fact one can show more: Given a finite collection of non-constant germs f1,..., f; €
O, there is a nowhere dense closed subset S of the space of linear isomorphisms £(C™,C™) such
that, for every linear change of coordinates ¢ ¢ S, fi,..., fi are all regular in the same variable z;
(1 <j<m). Exercise.

Proposition 4.9. The ring Op o is a unique factorization domain.

Proof. Tt suffices to consider O,,. Induction on m: If m = 0, then O,,, = C is UFD as a field. Suppose
then that O,,_; is UFD. By the Gauss Lemma, so is Op,_1[x,,]. Suppose now that an irreducible
germ f € O,, divides the product gh € O,,. We want to show that f divides one of the factors. By
Remark 4.8 above, we may without loss of generality assume that all f, g and h are x,,-regular. Let
F,G,H € Op_1[zm] and 1, s,t € O, \ m be such that f = rF, g = sG, and h = tH (Weierstass
Preparation). Then f|gh implies that F|GH in O,,—1[zy], and F is irreducible in O,,_1[z,,] (being
an associate of f). Now, since O,,_1[z,] is a UFD, it follows that F|G or F|H, hence f|g or f|h
respectively. O

4.2 Analytic germs

Definition 4.10. Let M be an m-dimensional manifold, and let a € M. Given a germ f € Oy 4, We
define a set-germ

V(f):=={zeM: f(z) =0},, where f is a representative of f at a,
which we call the zero set germ of f.
Remark 4.11.
(1) The zero set germ definition is independent of the choice of representative.
(2) If f and g are associates in Oy 4, then V(f) = V(g).
3) V(fi--fe) =V([)U---UV(fk) for f1,..., fk € Onma-
(4) One defines V(f1, ..., fr) == V(f1) N NV(fi). We have V(f1,..., fi) = {fi ="+ = fu = O},

where f1,..., fr are arbitrary representatives at a of fi,..., f respectively.

(5) Given an ideal I in Oy q, one defines the zero set germ of I as V(I) = V(f1,..., fx) (=V(f1)N
—NMV(fx)), where f1,..., fr generate I. The definition is independent of the choice of generators.

(6) For ideals I,..., I in Op 4, we have

V4 + 1) =V(I) N -NV(I).

(7) Given ideals I and J in Opy 4,
IcJ = Vv{I)>Vv({J).

In particular, V(I) C V(f) for any f € I. Hence (Exercise), for I1,..., I,
V(Ilﬁ“-ﬂlk) :V(Il)U“-UV(Ik).

(8) For any ideal I, we have
V(I) = V(radl)

(Exercise - combine properties 3, 4 and 7 above).
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Definition 4.12. A germ A at a is called an analytic germ, when it is a germ of a locally analytic set
through a; i.e., A has a representative A analytic in some neighbourhood of a (and a € ;1) Equiva-
lently, A = V(h1,...,hs) =V((h1,..., hs)) for some hq,...,hs € Oprq. The ideal (hq,. .., hs) is then
called a defining ideal of A.

An analytic germ A is called smooth (or non-singular) when it is a germ of a submanifold of M
through a. Otherwise, A is called singular.

Definition 4.13. Let A be an analytic germ at a. We say that f € Oy, vanishes on A when some
representative of f at a vanishes on some representative of A at a. Equivalently, A C V(f). The set

J(A) ={f € Om,a : f vanishes on A} = {f € Ono : A CV(f)}
forms an ideal in Oy 4, which we call the full ideal of A (or the ideal of A, for short).
Remark 4.14.

(1) Ac B = J(4) > 3(B).
(2) J(A1U---UA) =J3(A1) N NJ(Ak).

(3) For any analytic germ A we have
V(3(A)) = A.

Indeed, if J(A) is generated by gi,...,gs, then V(J(A4)) = ] V(gi) D A. On the other hand,
A=V(hi,...,h) =V(hi) N---NV(hy) for some h; € Oprq. Then hj € J(A), hence V(h;) D
V(J(A)) for j =1,...,t, and thus A D V(J(A)).

(4) Now, by properties 1, 3, and Remark 4.11(7), for every pair of germs A and B,
ACB < J(A) DJB) and A=B & J(A4) =3J(B).
Hence, by noetherianity of Oy q:
Proposition 4.15. FEvery decreasing sequence of analytic germs is stationary.

Definition 4.16. An analytic germ A is called reducible when A = A; U As for some proper analytic
subgerms A; and As. A germ which is not reducible is called irreducible.

Remark 4.17. If A is an irreducible analytic germ, then, for any collection By, ..., By of analytic
germs, we have (Exercise)

ACBiU---UBy, = AC Bj for some j.

Proposition 4.18. Every analytic germ is the union of a unique finite collection of irreducible analytic
germs {A;}, satisfying A; ¢ U Aj, which we call its irreducible components.
i
Proof. Exercise. O
Remark 4.19. The following two properties are not difficult to verify (Exercise):
(1) Every smooth analytic germ is irreducible.
(2) An analytic germ A is irreducible iff its ideal J(A) is prime.

Definition 4.20. An analytic set X C M is called locally irreducible when its germ X¢ at every point
¢ € X is irreducible.
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5 Proper projections

5.1 Proper projections

Recall that a mapping ¢ : X — Y of topological spaces is called proper when ¢~!(K) is compact
for every compact K C Y. We list here a few simple observations regarding proper projections.
Throughout this section M is an m-dimensional manifold, k is a positive integer, X is a closed subset
of M x CF, and

7:MxCFs(y,x) » yeM

is the canonical projection.
Lemma 5.1. The following conditions are equivalent:
(i) 7|x : X — M is a proper projection.
(ii) For every yo € M there are a coordinate neighbourhood U of yo in M, and R > 0, such that

yeU, (y,2) € X = z € RAF.

Proof. Exercise. O
Lemma 5.2. Suppose Z C M x C¥ is such that the restriction wt|z : Z — M is proper. Then:

(i) Z is closed.

(ii) 7|z : Z — M is a closed mapping.

Proof. (i): Suppose (z,){° C Z is a convergent sequence, with z, —— 2y € M x C*. Then
n— oo
K = {z, : n € N} is compact. By continuity and properness of 7|z, 7~ (n(K))NZ = (n|z) " (x(K))
is compact as well, and hence 29 € Z, as (2,)$° C 7~} (m(K)) N Z.
(#4): Let F # @& be a closed subset of Z, and let (y,)5° C m(F) be a convergent sequence, with
Yn — Yo € M. Put K = {y,, : n € N}. Then (7|z)"1(K) N Z is compact, as the intersection of a
n—oo

compact and a closed set, and there exists (z,,)$° C (7|z) "1 (K)NZ such that 7(z,) = y,. Now, (2,)$°
contains a subsequence convergent to zg € (m|z) ' (K)NZ, hence yo = m(20) € m(F), as required. [J

Lemma 5.3. Suppose w|x : X — M is proper, yo € M, and r > 0 are such that
(w]x) ™" (yo) C {yo} x rA*.
Then there is a coordinate neighbourhood U of yo in M for which
(n|x)""(U) = XN (U xrA¥).

Proof. The set Z = X \ (M x rAF) is closed. Hence 7(Z) is closed in M, by Lemma 5.2, and
yo ¢ 7(Z). Let U be a coordinate neighbourhood of yo in M for which U ¢ M \ 7n(Z). Now,
X = (XN (M xrAF))U Z, and hence
()T U)=UxCHNX = (UxCHNXN(MxrAF) U (UxC*nZ)=
(UxrAM)NX)ue = U xrAF)nx.

O
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Let now f: CF — CL @y : M xC* 5 (y,2) = (y, f(z)) € M x C!, and let 7 : M x C' — M be the

canonical projection.

Lemma 5.4. Suppose |x : X — M s proper, and f : C¥ — C! is continuous. Then:
(i) (®f|x): X — M x C is proper.
(ii) Xy = ®;(X) is a closed subset of M x C!.

(i4i) 7|x, : Xy — M is proper.

Proof. Exercise.

Lemma 5.5. Suppose M is connected. Let ay, ..

O

.yaq: M — C be continuous, with ag Z 0, and let

X ={(y,2) € M x C:ao(y)z” + ar(y)a®" + -+ ag_1(y)z + aa(y) = 0} .

Then w|x : X — M 1s proper iff ao(y) # 0 for everyy € M.

Proof. “<": Let K C M be compact, and let

/i
R =2 max 95 () ?
j:yleKd ao(y)

Then all the roots of ag(y)z? + --- + aq(y) lie within RA for all y € K. Hence (7|x) *(K) =

X N (K x RA) is compact.

“=7: Put S = ay '(0) and suppose that S # @. Choose yo € dS. Then ag(yo) = 0 (by continuity),
and there exists (y,)° C M \ S such that y,, — yo. The set K = {y,, : n € N} is compact, so by
n—00

Lemma 5.1, there exists R > 0 for which

Then, for every n > 1,

aj; (yn)

ao (yn)

yeK, (yr)eX =

lz] < R.

d ) .
< (,)RJ (by Viéte’s formulas), hence |a;(yn)| < (%) R|ao(ya)l,
J

and consequently a;(yo) = 0 for j = 0,1,...,d. Therefore X contains the entire line {yo} x C,
contradicting the properness of 7|x. It follows that 95 = &. But S is a proper closed subset of a
connected manifold, so S = &.

5.2 Resultant and discriminant

We recall first the notion of resultant. (Here w stands for a single variable.)

O

Definition 5.6. Let A be an integral domain. Given two polynomials P = apw? + - + ap—1w + ap
and Q = bow? + - -+ 4+ bg_1w + by in A[w], one defines the resultant of P and @ as the determinant

R(P,Q) =

(o)) a1 . ap
ag aj ce ap
ap a1
bo by ... b,
bp b1 ...,

where the number of “a;-rows” is equal to ¢, the number of “bj-rows” is equal to p, and the blank

spaces are filled with zeros.
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We have the following very useful result.

Theorem 5.7. Let A be an integral domain, and let P,Q € A[w] be nonconstant polynomials. Then
there exist polynomials F,G € Alw] such that

FP+GQ=R(P,Q), (5.1)

with deg F' < deg Q and deg G < deg P. In particular, if P and Q have a common factor (of positive
degree), then R(P,Q) = 0 in A. If moreover A is a UFD, then R(P,Q) = 0 implies that P and Q
have a common factor.

Proof. Let P = apw? + ajwP™! + -+ + a, and Q = byw? + byw?™! + - + b,. Multiply P and Q by
the consecutive powers of w and consider the following system of p + ¢ equations

wi™ P = quwPtl 4 quuwPtiT? 4+ .. 4+ guuwi!
wi 2P = agwPtI=2 4+ . + apwi?
= agwP + + ap
wPlQ = bowPteTl 4 bwPte? 4 4 P!
wP=2Q = bowPta=2 4+ . +  bywP™2
= bowq + ................. + bq
Let C be the column vector on the left hand side, and let Cy, ..., Cpyq be the column vectors of the

coefficients. Then the above system of equations can be written as
C = wPti=t. Gy + wPt172. ¢y +tw - Cppgo1+1:-Cpyyg.

Now, treating the wPT9~1 ... w,1 as independent variables and applying Cramer’s Rule to the last
variable (which is 1), we get

1- det(C’o, ey Cp+q) = det(Co, ey Cp+q—1a C) .

Notice that det(Cy,...,Cptq) = R(P, Q) and the right hand side can be written as F'P + GQ with F'
and G in Afw], of degrees ¢ — 1 and p — 1 respectively (by expanding the matrix (Co,...,Cpiq—1,C)
according to the last column).

Next, suppose that P and @ have a common factor. Then the polynomial on the left hand side of
(5.1) has a root. On the other hand, the right hand side of (5.1) is a constant polynomial, so it has a
root iff it is identically zero.

Finally, suppose that A is a UFD, R(P,Q) = 0, and P and @ have no common factor of positive
degree. Let F and G be the polynomials from (5.1). Then FP = —GQ, hence every irreducible
factor of @) divides F'P. Since P and @ are relatively prime, it follows that @ divides F'. But this is
impossible, as deg F' < deg Q. O

Definition 5.8. Let A be UFD and let P € A[w] be a monic polynomial of degree d. One defines the
discriminant of P, denoted D(P), as

Notice that D(P) € A. In our considerations, we will be interested in the case when A = Opyq
for some manifold M (which is a UFD, by Proposition 4.9). We then have the following
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Lemma 5.9. Let M be a manifold, P = w® + ayw?™' + .-+ ag € O(M)[w], and let D = D(P).
Then

o 1 OP
D(2) = [J(wi —w;)* = (D@ [] 5z wy)
1<j Jj=1
for z € M, where wy,...,wq are the roots of the polynomial {w — P(z,w)}.

Proof. Exercise [Hint: Argue pointwise. Notice that, for a fixed z € M, P(z,-) € C[w] is a product
of precisely d linear factors.] O

In general, we have:

Proposition 5.10. Let A be a UFD of characteristic zero, and let P € Alw] be monic. The following
conditions are equivalent:

(i) P is divisible by Q* for some Q € A[w] of positive degree
(i) P and OP/Ow have a common factor of positive degree
(iii) Discriminant D(P) is zero.

Proof. See, e.g., [Lo, A.6.3]. O

Remark 5.11.

(1) Given A and monic P € A[w] as above, there are unique (distinct) monic irreducible polynomials
P, ..., Ps and positive integers my, ..., mg such that P = P/™ ... P™= in A[w]. We then define

redP=P;... P;.
It follows from Proposition 5.10 that D(redP) # 0.

(2) For a distinguished germ P € Oy q[w], we put
redP = (redP), ,

where P € O(U)[w] is a monic representative of P at a. Since, for every z € U, the roots of P
and red P are the same, it follows that {P = 0} = {redP = 0} as subsets of U x C. In particular,
it P € O q[w] is distinguished, then so is red P.
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5.3 Remert Proper Mapping Theorem

Let, again, M be an m-dimensional manifold, & > 1, and let 7 : M x C* 3 (z,2) — 2z € M be the
projection.

Theorem 5.12 (Remmert Proper Mapping Theorem). If X is analytic in M xCF, and nt|x : X — M
is proper, then m(X) is analytic in M.

Proof. Induction on k: The case k = 1 follows from Lemmas 5.13 and 5.15 below, so let’s suppose the
theorem holds for k —1 > 1 and X is analytic in M x CF with proper projection onto M.

Let f(21,...,25—1,2%) = (T1,...,Tk-1), @y : M x CF > (2,2) = (2, f(x)) € M x CF~1 and let
mg—1: M x Ck=1 — M be the projection. Then @ is the projection (M x Ck=1) x C — M x CF1
and ®|x is proper (by Lemma 5.4), hence X; = ®;(X) is analytic in M x C¥~1. Now, Th—1lx, :
Xy — M is again proper, by Lemma 5.4, hence 7(X) = m,_1(X ) is analytic in M, by the inductive
hypothesis. O

To complete the proof of Theorem 5.12, it remains to show the following two lemmas.

Lemma 5.13. Suppose X is analytic in M xC, the projection w|x : X — M s proper, and zg € w(X).
Then there exist a coordinate neighbourhood U of zg in M, positive integers d and s, and polynomials
Wo,..., W, € O(U)[w] such that:

(i) Wy is monic of degree d in w

(11) degW; < degWy for all 1 < j <'s, and the coefficients of W1, ..., W, vanish at 0
(iii) X N (U x C) = [ W;(0).
j=0

Proof. The problem being local, we can assume that M = C™. By Example 2.5(4), (7|x) *(20)
is finite; say, (7|x) ' (20) = {(20,w1),...,(20,wp)}. Let U be a connected open neighbourhood of
zp € C™, and let r > 0 be such that B, (w;) N By(w;) =0 for i # j, and, for alli =1,...,p,

XN U x Byr(w;)) ={hi1 =+ = hiyy, =0} for some h;; € O(U x B, (w;)),

where B, (w) denotes an open ball in C centered at w with radius r. Since X N (U % By.(w;)) N ({z0} %
C) = {(z0,ws)}, at least one of the functions h;;(2o, -) has an isolated zero at wj; say, hi1 (20, ) does so.
Then the germs (R11)(zg,w,)s - - - > (Pp1)(z0,w,) are regular in w, so after shrinking U and r if necessary,
there are (by Weierstrass Preparation at the (2o, w;)) monic polynomials Wy, ..., W§ € O(U)[w] with

hi'(0) N (U x Br(wi)) = (W5)~H(0) N (U x Bp(w;))  fori=1,...,p.
Now, by Weierstrass Division, for alli =1,...,p and j =1,...,¢; we can divide
hij = gi;W§ +W,, where W) € O(U)[w] and degW; < degWj,

again, after shrinking U and r if necessary. Then X N (U x B,(w;)) = {W§ =--- = W} = 0}, and we
obtain the result by putting
Wo=Wg---Wp,

and Wy, ..., Wy to be the remaining products of the form

lel-uW]’.';, where i+ +jp > 1.



Complex Analytic Geometry - Math 9607 29

Corollary 5.14. Under the assumptions of Lemma 5.13, there exist a coordinate neighbourhood U of
zo tn M, and integer d > 1, such that

#(rlx) ' (z)<d forallzeU.

Proof. Indeed, if Wy is the monic polynomial from Lemma 5.13, then d = deg Wy will do, as XN
(U x C) c W, 1(0). O

Lemma 5.15. Suppose X is analytic in M xC, the projection w|x : X — M s proper, and zg € w(X).
Then there exists a coordinate neighbourhood U of zy in M, such that 7(X N (U x C)) is analytic in
U.

Proof. As in the proof of Lemma 5.13, we can assume that M = C™. Let U, and Wy, Wy,..., W, €
O(U)[w] be as in Lemma 5.13. Consider the polynomial

S(z,w, A1, .., As) = Wolz,w) + M Wi(z,w) + -+ + AW (2, w)
in w, A1, ..., As, monic with respect to w, and let
R(z,A1,...,2s) = R(Wy(z,w), S(z,w, A1,...,As)) € OWU)[A1,..., As]
be the resultant of Wy and S (as polynomials in w). We claim that
zem(XN({U xC)) < R(z,A,..., s)=0forall A\j,...\; €C. (5.2)

=7 I 2 e m(X N (U x C)), then (2/,w') € X for some w’ € C, hence both Wy and S vanish at
(2/,w’) for arbitrary A;’s. Thus, by Theorem 5.7, the resultant R(z’, A1, ..., As) vanishes as well.
“<”: Suppose that R(z',A1,...,As) =0 for all A\1,...,As € C. Notice that, for a fixed 2, W(z',w)
and S(z',w,\1,...,\s) are (with respect to w) polynomials with coefficients in C[\y, ..., ], which
is a UFD. Hence, by Theorem 5.7 again, R(Wy(2',-),S(2/,-,A1,...,As)) = 0 for all A,..., s € C
implies that Wy(2/,-) and S(2,-, A1,...,As) have a common factor for all A\y,..., A\ € C.

Since Wy(2’, ) vanishes only at finitely many points, say wi, ..., wq, then, for all Ay,..., As € C,
MW (2 wy) + -+ AW (2 we)) - oo - (MW (2 wa) + -+ + AW (2, wq)) = 0.
The ring C[A1, ..., As] being an integral domain, there exists w; for which

)\1W1(Z/,’U)j) + -+ ASWS(Z/,’U}]') = 0,
for all A1,...,As € C. Then Wy (%', w;) = --- = Ws(2',w;) =0, and hence 2z’ € 7(X N (U x C)).

Now, by the construction of resultant,

R(z,A1,...,As) = g R (2)A*, where R, € O(U).
a€eN®
al<D

It thus follows from (5.2) that 7(X N (U x C)) = ﬂ R;'(0), which completes the proof. O
la|<D
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5.4 Dimension of a proper projection

We complete this section with a theorem stating that a proper projection of an analytic set preserves
the dimension. First, we prove “the obvious” inequality.

Lemma 5.16. Suppose X is analytic in M x C, ©|x : X — M is proper, and w(X) = M. Then
dim X > dim M.

Proof. Let zg € M and let U be its coordinate neighbourhood, such that X N (U x C) = m W, 1(0),
=0

as in Lemma 5.13, where Wy is a monic polynomial in w. By Remark 5.11, we may assume that W
is reduced in O(U)[w], and hence the discriminant ¢ := D(Wy) € O(U) is not identically 0 on U. Let
Z = (U x C)n Wy 0), and let d = max{#(n|z)"'(2) : z € U} (= degWp). By replacing z, with
another point of U, we may assume that (7|z)"*(20) = {(20,w1), ..., (20, waq)}. Then, by Lemma 5.9,
d(z0) # 0 and hence, for a sufficiently small neighbourhood V' of zg, §(z) # 0 for all z € V. Therefore,
for a small enough r > 0, the set ZN (U‘f(V x B,(w;))) is a disjoint union of graphs of d holomorphic
functions hy,...,hqg € O(V).

Indeed, Wy being monic in w, it follows from Lemmas 5.1 and 5.5 that the germ (WO)(zo,wj) is
regular in w —w; (j = 1,...,d). Then, by Weierstrass Preparation, Wy = W/ - W} within sufficiently
small V' x B,.(w;), where W # 0 on V' x B,.(w;) and (W) (., ;) is distinguished in w — w;. Since
Wo(z,-) has only simple roots for z € V, it follows that deg W/ = 1 (after replacing W} by red(W;) if
necessary). Therefore W/(z, w) = w + a;1(z) and we may put h;(z) = —a;1(2).

Now, at least one of the graphs I'j,, must be contained in X N(V x C), for otherwise V = n(X)NV
would be a finite union of proper analytic subsets of V', which is impossible. Hence dim X > dimI'y,, =
dim M, as required. 0

Theorem 5.17. Suppose X is analytic in M x C¥, and the projection 7|x : X — M is proper. Then
dim X = dim 7 (X).

Proof. By the proof of the Remmert Proper Mapping Theorem, it suffices to consider the case k = 1.
Let us first show that dim7(X) < dim X. Let N be a submanifold of M, contained in 7(X), and of
dimension dim N = dim7(X). Put Z = X N (N x C). Then the projection 7|z : Z — N is proper,
and m(Z) = N, so by Lemma 5.16, dim Z > dim N = dim 7(X).

To show that dim X < dim#w(X), let S be a submanifold of M x C, contained in X, and of
dimension dim S = dim X. Since the projection m|g is proper, then the nonempty fibres of 7|g are
O-dimensional. By Example 2.5(5), we may assume that the rank of 7|g : S — M is maximal, and
hence rk(7|g) = dim S (Rank Theorem 1.10). Then

dim X = dim S = rk(n|g) = dim7(5) < dim7(X).
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6 Local representation of analytic sets

6.1 Normalization and Nullstellensatz
Recall that, for a subset A of a manifold M and a point & € M,
dimg A = min{dim(A NU) : U an open neighbourhood of ¢ in M}.
Theorem 6.1. Let X be an analytic subset of a manifold M, and let £ € X. Then
dim¢ X = min{codimN : N submanifold of M, NNX = {£}}.

Proof. Suppose that k& = min{codimN : N submanifold of M, N N X = {{}}, and let N be such
that NN X = {¢} and dim N = m — k, where m = dim M. The problem being local, without loss
of generality we can assume that M = eAF x A™=F ¢ =(0,0), N = {0} x A™ % and X is defined
in M by some hy,...,hy € O(M) vanishing at (0,0). Let 7 : C¥ x C™~* — C* be the canonical
projection. Since X NN = {(0,0)}, the fibre (|x)~1(0,0) is the singleton {(0,0)}. It follows that, for

every j = k+1,...,m, there exists 1 <t < s such that the germ (h¢) (9,0 is regular in ;. Therefore,
by Weierstrass Preparation (and after shrinking e if needed), X is a subset of the zero set of a monic
polynomial in z;. Hence, by Lemmas 5.1 and 5.5, for each j = k + 1,...,m, there exists r; > 0 such
that
r=(z1,...,zm) €X = |z;|<rj.
Setting r = max{rgy1,...,"m}, we get that
r=(21,...,xm) €X = (o] <7 .. )zm] <T) .

Thus, by Lemma 5.1 again, 7|x : X — C* is proper, and hence dim X < k, by Theorem 5.17.

On the other hand, if dim X < k, then dim7(X) < k, by Theorem 5.17 again, so there exists a
complex line L C C* through 0, for which 7(X)N L = {0}. Then N = N x L is of codimension
smaller than k, and NNX = {¢}, which contradicts the choice of N. O

Corollary 6.2 (Normalization Lemma). Let X be an analytic subset of an m-dimensional manifold
M. Then, at every point & € X, there is a coordinate chart (U,p) such that p(§) = 0, o(U) =
AF x Am=F where k = dimg X, and the projection Tlox) + p(X) — A is proper and surjective.

Proof. By the above proof, there exists a coordinate chart (U, ) such that 7|,x) : ¢(X) — AF
is proper. Then surjectivity of 7|,(x) follows from the fact that 7(p(X)) is analytic in A* and of
dimension &. O

For the next corollary (Ideal Normalization, below), we need to recall the notions of k-normal and
k-regular ideals. An ideal I in O, is called k-normal, when it satisfies the equivalent conditions of the
following lemma.

Lemma 6.3. Let I be an ideal in O, and let 0 < k < n. Let Oy, denote the image O /(I N Ok) of
Oy, under the epimorphism O, — O, /I. The following conditions are equivalent:

(i) O,/1 is finitely generated as a module over Oy (hence also an integral ring extension of O ).
(ii) On/I = OklTrs1, ..., Ty and the classes (modulo I) Ty 1, .., T, are integral over O,.

(iii) I contains a distinguished polynomial from Oglx;] for every l =k +1,...,n.
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(iv) I contains a regular germ from Oy for everyl =k+1,...,n.
Proof. Exercise (cf. [Lo, I11.2]). O
Definition 6.4. An ideal I in O,, is called k-regular when I is k-normal and O NI = 0.

Corollary 6.5 (Ideal Normalization). Let A = V(I) be a k-dimensional analytic germ at 0 € C",
where I 1 O,,. Then both I and J(A) are k-regular, up to an analytic change of coordinates.

Proof. By Corollary 6.2, we may assume that A has an analytic representative X C A* x A"~* at 0,
such that 7|x : X — A is proper and 7(X) = A*, where 7 : A¥ x A% — A¥ is the projection.
It follows that J(A) N O = 0, for if 0 £ f € J(A) N O, then A = V(J(A)) C V(f), and hence
7(X) € m({f = 0}) would be a proper subset of A*. Hence also I N Oy = 0.

Now, as (7]x)~1(0,0) = {(0,0)}, the ring C{xg1,...,2,}/1(0) is a finite dimensional C-vector
space (where the evaluation is at 1 = - -+ = x;, = 0). Then, by Weierstrass Finiteness Theorem 3.17,
O,,/1 is a finitely generated Oy-module (hence so is O,,/J(A)), and as INOy, = 0 (resp. J(A)NOy = 0),
it follows that O,,/I (resp. O, /J(A)) is finitely generated over O /(I N O) (resp. O/(J(A) N Ok)).
Thus, by Definition 6.4, I and J(A) are k-regular. O

Theorem 6.6 (Nullstellensatz). For every ideal I in C{xy,...,x,}, we have JV(I)) = radl. In
particular, JWV(I)) = I when I is prime.

Proof. Suppose first that I is prime. By Corollary 6.5 above, we may assume that I is k-regular for
some k > 0 and O, N J(V(I)) = 0. Since I C J(V(I)) anyway, it suffices to show that J(V(I)) C I.
Let f € O, \ I. Then f € O,,/I\ {0}, hence by integrality of O, /I over O /(I N Oy) (Lemma 6.3),
fg € Ox/(INO)\ {0} for some g € O,, (since I is prime, O,,/I is an integral domain, integral over
a UFD Oy /(I N O4) = Ok, and hence f € O, /I has a minimal polynomial ag + ayw + - - - + w® over
Oy /(INOk); by minimality, ag # 0, so put g = aj+azf+---+f571). Therefore fg € h+I C h+I(V(I))
for some h € Oy \ I. Now h ¢ J(V(I)), as O NJ(V(I)) =0, so fg ¢ J(V(I)), and thus f ¢ J(V(I)).

For an arbitrary I, let I = J; N---N Js be a primary decomposition. Then radJ; are prime and,
by Remarks 4.11.(7)-(8) and 4.14.(2), we get

IV)) = ﬂs(vui)) = nJ(V(radJi)) =(radJ; = radl .

)

6.2 Riuckert Lemma

The following result is a consequence of the fact that every finite algebraic field extension L/K can
be expressed as a primitive extension L = KI{].

Proposition 6.7 (Primitive Element). Suppose A is a UFD and a C-vector space, and B = A[n1, ..., ns)
is integral over A. Then there exists a primitive element

&= Zami € B, where a; € C*,
i=1

such that B C A[€], where § is the discriminant of the minimal polynomial of & over A.

Proof. See, e.g., [Lo, A.8.3]. O
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We are now ready to prove the fundemental result of Riickert.

Proposition 6.8 (Riickert Lemma). Suppose A =V(I) is a zero set germ of a prime k-regular ideal
I in O,,. Then there exist a connected open neighbourhood U of 0 in CF, proper analytic subset Z of
U, and a representative X of A analytic in U x C*™*, such that:

(i) the projection w|x : X — U is proper

(i) (m|x)7(0,0) = {(0,0)}

(iii) XNw=(U\Z) is a k-dimensional manifold, and, locally at every (z1,..., Tk, Tky1,...,Tpn) € X,
a graph of a holomorphic function over a neighbourhood of (x1,...,x).

Proof. For simplicity of notation, let y = (x1,. .., xx) denote the set of variables of Of. Let Gy,...,G; €
O, be a system of generators of I. By Lemma 6.3(iii), I contains polynomials F; € C{z}[z;] distin-
guished in @, for j = k+ 1,...,n. Hence, after evaluating at y = 0, the diagram (I(0)) C N*~*
contains a vertex on each of the axes, and so its complement, A = N"~* \ 90(1(0)), is a finite set.
Therefore, by replacing each of the GG; with its remainder after Hironaka Division by the Fj41,..., Fy,
and adding Fjy1,...,F;, to this collection, we can assume that I is generated by G,..., Gy, where
Gi = Gi(z, a1, -, Tn) € CL2}@ha1, .-, 2n), i =1,...,5. Let £ € O, be such that £ € O,/ is a
primitive element of O,,/I over Of. By Proposition 6.7 above,

n
&= E a;T; for some a; € C*,
j=h+1

so after a linear change of coordinates
n

(Ih---,zk,ﬂﬂk+17$k+2,---,9€n) — ($1,---717k, E ajﬂfj,fl?k+2,-~-7$n)7
j=k+1

I is still k-regular, and £ = Tj41. Let F € Og[w] be the minimal polynomial of Zy, 1, and let
Qk+2,-- -, Qn € Ok[w] be the minimal polynomials of Zgya,...,Z, respectively (which exist, as O, /T
is an integral domain, integral over a UFD Oy /(I N Oy) = O). Then F(xk41) € I and Q,(z;) € I,
j=k+2,...,n. The polynomials F,Qg12,...,Q, are monic, and hence distinguished. (Indeed,
consider Q,, for instance: Q,(y,r,) = ¢ +c1(y)rd=t 4 -+ c4(y) is regular in x,,, and hence, by the
Weierstrass Preparation, Q,, = qQ/,, where ¢(0,0) # 0 and Q/,(y,z) = 2}, + 1 (y)xlt + -+ + y(y) is
distinguished. Evaluating at y = 0, we get that | = d, and ¢1(0) = -+ = ¢4(0) = 0.)

Next observe that F, Qg+2, - . ., @y are linearly independent modulo my I, since the initial exponents
of F(0)(zr+1) and Q;(0)(x;), 7 = k +2,...,n, are pairwise distinct. Therefore we can assume that
F,Qk12,...,Q, are among our generators Gyp,...,Gs of I (Nakayama Lemma). F,Qgyio,...,Qn
being irreducible and distinguished, there are a connected open neighbourhood U of 0 in C* and
monic irreducible representatives F',Qg+2,...,Qn € OU)[w] of F,Qk+2,...,Qn respectively. By
Proposition 5.10, the discriminant § = D(ﬁ ) is not identically zero on U, and hence

Z={z€U:4(z) =0}

is a proper analytic subset of U. Moreover, after shrinking U if necessary, we may assume that all the

G1,...,Gs have representatives G1,...,Gs € O(U x C"~*). Then
X={G = =G,=0}
is an analytic representative of A in U x C"~* and as

XC{F=Qro=-=Qn=0},
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the projection 7|x : X — U is proper (Lemma 5.1). Also, (7]x)~%(0,0) = {(0,0)}, as all the
F,Qk42,...,Q, are distinguished.

By Proposition 6.7 above, -0, /I C Og[Txt1]. In particular, for j = k + 2,...,n, there are
P; € Op[w] such that
50.%‘j — Pj($k+1) el.

We will now show that, for every y € U \ Z,

F(ya$k+1) = 5(y)$k+2 *§k+2(y,$k+1) = e = 5(@/)% *ﬁn(y,xk—o—l) =0
= él(y,xk+1,...,zn) = ... = és(y,xk_H,...,:cn) =0, (6.1)

where F € O(U)[w] are representatives of the respective P;. Indeed, the implication “«<” follows from
the fact that the germs at 0 of all the functions of the left hand side belong tol = (Gy,...,Gs)O,. For

the other implication, consider a formal expression G;i(y, Zri1, Pogo(y, Zhi1) /0, Po(y, Tps1) /).
Let d; = deg, G;. Then

6diéi(ya LTk+1, ﬁk-‘r?(ya .13k»+1)/5, EERR ﬁn(yv $k+1)/6) € Ok [xk-‘rl] )

and hence, by minimality of F', we can divide

8% Gi(y, 2rs1, Pova (Y, 2rs1) /0, - Puys a141)/0) = F(y, 2pa) Hi(y, Tri1)

for some H; € Olxk41]. Therefore, if the left hand side of (6.1) is satisfied, we get
5diéi(y7 karl) L 7:En) = (sdlél(y, xk+17 ﬁk+2(y7 xk+1)/67 ey ﬁ’n(yu CUk;Jrl)/é) = 07

and hence éi(y,xk_l,_l, cooxy) =0, i=1,...,s, as required.
Put now

Fl(ya$k+17-~~»33n) :F(yu‘rk%l»l) and

Fj*k(yaxk+17"'a$n) = §(y)$] _Pj(y7xk+1)7 .7: k+277n

and consider F' = (F1,...,F,_j) : (U\ Z) x C"~* — C"~*. Tt follows from Lemma 5.9 that, for every

OF;
e XNa YU\ Z), the Jacobi matrix [ : (5)] - is invertible, and hence, by (6.1), X is a

ox;
J =kt
graph of a holomorphic function in a neighbourhood of every such ¢ (Implicit Function Theorem). O
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7 Irreducibility and dimension

7.1 Thin sets

Definition 7.1. We say that a subset Z of a manifold M is thin when Z is closed, nowhere dense,
and, for every open ) C M, every function locally bounded on € and holomorphic on Q \ Z extends
holomorphically to 2.

Lemma 7.2. Assume that § € O(M) doesn’t vanish identically on any component of M, and let Z
be the zero set of 0. Then Z is thin in M.

Proof. Z is closed and nowhere dense, by Theorem 2.7. To prove that Z has the extension property,
it suffices to show that, for every £ € Z, there exists a coordinate neighbourhood U of £ in M such
that every bounded f € O(U \ Z) admits F' € O(U) with F|;nz = f. We may thus assume that
M=Cm"¢=0, f € O(RA™\ Z) and bounded on RA™ for some R > 1.

By Proposition 4.7 and Lemma 5.5, we may assume that the projection 7|z : Z — A™~1 is proper,
and ZN(A™ ! x9A) = @. Let y = (x1,...,2m_1), for simplicity of notation. Since f is holomorphic
in A™! x OA, we may define

Fy,xm) = L/8 Mdc for (y,xm,) € A™.

271 Jon ¢ — Ty

Now F' is holomorphic in A™ and we just need to check that F(y, x.,) = f(y, Tm) for (y, xm) € A™\Z.
Given y € A™~ ! the set ZN ({y} x A) is finite, so by the Riemann Extension Lemma (see, e.g., [Wh,
Lema 3B]), f(y,-) extends to a holomorphic function in {y} x A, and is given by the same formula as

7.2 Analytic cover

Lemma 7.3. Consider the set Y = {v =} U---U{v = ng} in (C")L, where n; = (n},...,nF),
v=(vl,...,v") € C". There exist polynomials P,..., P, symmetric with respect to n1,...,nq, and
such thatY = {P; = --- = P,}.

Proof. By Remark 4.11(7),
Y = {(771,-~-777da11) : f(il,...,id)(nla'-'andvv) =0forall 1 < Z.lv"wid < T’},

where ‘ 4 ‘ _
f(i17~~-7id)(7717 ) ndvv) = (v“ - 77?) s (vzd - Usz) .
Since Y is symmetric in the n’s, it follows that

Y ={(n,..-,04,0) ¢ fir,..ity(Mr(1)s - > Nr(ay,v) = 0 for all 1 <'dy,... i <r,7 € Sa}.

Further, let [ = d!, and let o, (wy,...,w;) = (=1)" Z wj, ...wj,, v = 1,...,1, be the Viéte’s
J1<<ju
polynomials in [ variables. Put ¢ = (0y,...,0;) : C' = C'. Then, since c~1(0) = 0, we have

Y={(m,---,n4,v) : Poyy,..i,=0foralll1 <iy,...,ig<r, v=1,...,1},

where Py i, g = 00 (fir,id) My (0)s 3N (@)5 )5 -+ o5 S(in i) (1) - -+ 5 T ()5 V)



36 Janusz Adamus

Now P, ..., are clearly all symmetric with respect to n1, ..., 74, and, for z = (z1,...,2,) € C",
we have
PV,il,de (7717 <5 Nds 33) = Z aﬁ(’lla s 777d)xﬁ )
BEN"
|8|<vd
where ag are also symmetric with respect to nq,...,n4. O

Lemma 7.4 (Analytic Cover). Suppose M is a connected manifold, Z is a thin subset of M, and
N is a closed submanifold of (M \ Z) x C", which is locally a graph of a holomorphic function over
M\ Z, and such that the projection w|5 : N — M is proper. Then, for every collection {As}ses of

connected components of N, the set U A is analytic in M x CT.
ses

Proof. Observe first that, for every S # @, | J, .o A itself is a closed submanifold of (M\ Z) x C", which

seS

is locally a graph of a holomorphic function over M \ Z, and that the projection 7T|W : U As — M
° ses
is proper if w\ﬁ : N — M is so. Therefore it suffices to prove the result for N itself.

The projection 7| : N — M \ Z being proper, it is in fact a finite locally biholomorphic cover. It
follows from Definition 7.1 that M \ Z is connected, and hence the rank of the cover is constant over
M\ Z; say, equal d. Let now Py(n1,...,M4,0),...,Ps(n1,...,n4,v) be the symmetric polynomials of
Lemma 7.3. For (y,z) € (M \ Z) x C", define

Fi(y,x) = Pi(m(y), - ma(y),z), j=1,....s,

where {n1(y),...,na(y)} = NN (x|x) 1 (y). Then by Lemma 7.3, N is precisely the set of common
zeros of Fy,...,Fsin (M \ Z) x C". Note that the F; are holomorphic as composites of holomorphic
functions (71, . ..,n4 being the holomorphic functions locally defining N over M \ Z).

Moreover, F' = (F1,..., Fs) extends (uniquely) to a holomorphic mapping M x C" — C?. Indeed,
for 5 = 1,....8, Pj(m,...,na,x) = Y. ag(n,...,na)z", where the sum is finite and the ag are
symmetric polynomials in 7y, ...,14. Now 11(y),...,na(y) being holomorphic functions on M \ Z, it
follows that ag(n1(y),...,na(y)) € O(M \ Z). By properness of 7|5, the ag are also locally bounded
on M, and hence extend uniquely to O(M), by Definition 7.1.

We will now show that N = F~!(0), which will complete the proof. Consider the coordinate
projection 7 : F~1(0) — M. We have #=1(M \ Z) = N, and hence it suffices to show that #=1(M \ Z)
is dense in F~1(0). Suppose otherwise. Then there exist (yo,z0) € F~1(0), and its relatively compact

open neighbourhood U x V' C M x C", such that (U x V) N7~ (M \ Z) = @. We may then choose
(yn)$° C U\ Z such that y, — % and F(yn,x) # 0 for any € V. (Indeed, if y, € U \ Z, then

F(yn,x) = 0iff (y,,7) € N=7"1(M\ Z); but (yn,x) €U xV, 50 (yn,z) &€ N.)

Hence, for every n € N and every x € V, there is 1 < j < s with

Pj(nl(yn)a"'7nd(yn)’x) = Fj(ynvx) 7é 07

and thus 7;(y,) ¢ V, i = 1,...,d. By properness of 7|5 again, for every i = 1,...,d, the sequence
(n:(yn))22; is bounded, and so we can, for every i = 1,...,d, choose a convergent subsequence
7i(Yn) n_>—oo> 1; # xo. Hence

F(yo,l‘o) = (P1(7717~--a77d7330)7~-~,Ps(7717~-~77ld7$0)) #O’

which contradicts the choice of (yo, zg). O
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7.3 Local irreducibility and dimension

Remark 7.5. Clearly, every connected locally irreducible analytic set is irreducible. The converse,
however, is usually not true. Consider, for instance, the following algebraic curve in C2,

X ={(z,y) € C?: y* =2*(x - 1)}.

Then X is irreducible (Exercise), but X (g o) splits into two irreducible components y = +zvx — 1,
where /x — 1 denotes a fixed branch of the square root of x — 1 at zero.

Proposition 7.6. Suppose that an analytic subset X of a manifold M, and a point £ € X are such
that X¢ is irreducible, of dimension k. Then there exists a neighbourhood Q0 of € in M for which
reg(X N Q) is a connected k-submanifold of 0, and dimY < k for every proper analytic subset Y of
XnQ.

Proof. The problem being local, we may assume that M = A™ and £ = 0. Then, by Corollaries 6.2
and 6.5, and Riickert Lemma 6.8, there are local coordinates (z1,...,z,,) at 0, a connected open
neighbourhood U of 0 in C*, and a proper analytic subset Z of U such that the restriction 7|x : X — U
of the coordinate projection m : A x Am~%k — A¥ is proper, (7|x)~1(0) =0, and X N7~ YU\ Z) is a
k-dimensional manifold, and locally a graph of a holomorphic function over U \ Z. Call this manifold
N, and let Q =U x A™F,

By irreducibility of X, and Lemma 7.4, we get that N is connected, and the proper analytic
subset Z' = X NQN7~1(Z) of X is contained in N. Moreover, as a connected submanifold of X, N is
contained in a connected component, say A1, of reg(XNE2). Suppose reg(XNQ) has another component
As. Then A, must be disjoint from N, and hence contained in Z’. But then Ay C Z/ € N C Ay,
contradicting the openness of A in X N Q. Thus reg(X N Q) is connected.

Let now Y be a proper analytic subset of X N Q. Suppose that dimY = k. Then Y ¢ Z’, because
the properness of projection 7|z : Z' — Z implies that dim Z’ = dim Z < k (Theorem 5.17). Hence
Y Nreg(X NQ) is an analytic subset of a connected manifold reg(X N ), with nonempty interior, and
thus Y Nreg(X NQ) =reg(X NQ). Therefore Y O Y Nreg(X NQ) = X; a contradiction. O

Corollary 7.7. Suppose that an analytic subset X of a manifold M and a point £ € X are such that
X¢ 1s irreducible, of dimension k. Then there exists a neighbourhood ) of & in M for which

dim, sng(X N Q) < dim, (X NQ) forall z € Q,

and X N is of pure dimension k.

Proof. Let Q and Z’ be as in the proof of Proposition 7.6 above. Then sng(X N Q) C Z’ and every
point of X N lies in the closure of the k-dimensional manifold reg(X N £2), hence the result. O

Theorem 7.8 (Irreducible Components). Let X be an analytic subset of a manifold M. Then the

family {As}ses of connected components of regX is locally finite in M, and, for every T C S, U Ay
seT
is analytic in M. The sets Ay, s € S, called the irreducible components of X, are irreducible, and
X = U As.
ses

Proof. Let £ € X, and let X¢ = (X1)¢U---U(X,)¢ be the decomposition into irreducible components
(Proposition 4.18). We can now choose a neighbourhood € of £ in M, and representatives X1, ..., X,
of (X1)e, ..., (Xy)e respectively, analytic in © and such that
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e XNOQ=X,U---UX,,
e regX; is a connected submanifold of €, and
e dimY < dim X for every proper analytic subset Y of X},

for all j =1,...,q, by Proposition 7.6 above.
Fix ¢ € {1,...,¢}. By Proposition 4.18, X; N U X is a proper analytic subset of X;, and hence

i
dim(X; N U X;) < dim X;. Then (regX;)N U X is a proper analytic subset of the manifold regX;,
J#i J#i o
so by Theorem 2.7, ©; = (regX;) \ U X, is again a connected submanifold of Q, and ©; = X, is
J#i

analytic in 2. Clearly,

regX NN =reg(X NQ) =reg(X; U---UX,)

— <UregXi>\ UyUxinx; :U (regX)\ | JX; |, (7.1)

i=1 i=1 j#1i j#i

hence ©1,...,0, are precisely the connected components of reg(X N Q).

Now, consider the family {A;}ses of connected components of regX. The set X being closed in
M, the family is locally finite in M iff it is locally finite in X. The local finiteness now follows from
the fact that, for every ¢ € X and its neighbourhood Q¢ as above, we have, for every s € S, either
AsNQS =T orelse A;,NQS =0, U---UO;, for some iy,...,is € {1,...,q} (by (7.1)). The closures
A, are thus analytic in M. Each A, is also irreducible, because if A, = Y; U Y, then one of those
summands, say Y7, must contain an open subset of A, and hence of Ay; but then Y3 N A, = A, (by
Theorem 2.7), so Y1 D Y1 N A, = A,. Finally,

x=Uxnot=J s = U

feX feXi=1 seS

We can now “globalize” previous results on germs to analytic sets:
Corollary 7.9. An analytic subset X of a manifold M is irreducible iff regX is connected.

Corollary 7.10. If X is an irreducible analytic subset of a manifold M, then X is of pure dimension,
dimsngX < dim X, and dimY < dim X for every proper analytic subset Y of X.

Proof. By Corollary 7.9, regX is a connected submanifold of M; say, of dimension k. Therefore, to
prove that X is of pure dimension k£ and dimsngX < dim X, it suffices to show that, for every £ € X,
dim sngX < dim¢ X. Let then £ be a point of X and let Q2 be a neighbourhood of { in M, as in the
proof of Theorem 7.8. Then, by (7.1), we have

q
sngX N =sng(X NN = U sngX; U U(X’ nx; |, (7.2)
i=1 j#i



Complex Analytic Geometry - Math 9607 39

where X1, ..., X, are the representatives in 2 of the irreducible components of X¢. Now, for each i =
1,...,q, dimg sngX; < dim¢ X;, by Corollary 7.7, and dim¢(X; N X;) < dim¢ X;, by Proposition 7.6.
Hence

dimg sngX < ilrllaquimg X; <dime X

Let now Y be an analytic subset of X, and suppose that dimY = dim X. Then Y ¢ sngX, by above,
so Y NregX is a nonempty analytic subset of a connected k-manifold. But dimY = k implies that Y
contains an open subset of reg X, and hence, by Theorem 2.7, Y NregX =regX. Then Y =regX = X,
which completes the proof. O

Theorem 7.11. For every family {Xs}ses of analytic subsets of a manifold M, the intersection
m X s analytic in M.

ses

Proof. 1t suffices to show that, for every £ € M, there exist a coordinate neighbourhood U and a finite
subset T' C S such that

Un( X, = Un()Xs.
seS seT

Given £ € M, let then U be its relatively compact coordinate neighbourhood. Then, for every finite
T C S, the analytic set U N ﬂ X has finitely many irreducible components in U, by local finiteness

seT
in Theorem 7.8. For every such T, define

v(T) = (m(T),...,n(T)) e N™ 1, where m = dim M ,

and v (T') is the number of irreducible components of U N ﬂ X of dimension k. Observe that, for

seT
finite subsets 177,75 C S, we have

ThCTly = V(T1) lex I/(Tg).

Indeed, if h is one of the defining functions of X;, where ¢t € Ty \ T, then either h vanishes identically

on all the components of U N ﬂ X, or else its zero set along a component Y}, (of dimension k, say)
seTy
is a proper subset of Yy, hence v (Ts) < vi(T1). Therefore there exists a finite set Ty C .S for which

v(To) = minjex{v(T): T C S, #T < oo},

andhenceUﬂﬂXS =Un ﬂ X,. O

ses seTy



40 Janusz Adamus

8 Coherent sheaves

8.1 Presheaves and sheaves

Unless otherwise specified, all rings are assumed commutative with unity, and the ring homomorphisms
are unity preserving.

Definition 8.1. Let X be a topological space. A presheaf of rings F (on X) is a family {F(U) }vesopx
of rings with the following properties:

(1) F(@)=0

(2) For every pair of open sets V' C U, there is a ring homomorphism pyy : F(U) = F(V) such
that

(a) pyv =idF), and
(b) if W CV CU, then pyw = pvw © puv -

The elements of F(U) are called sections of F on U, and pyy are called restrictions. We will write
sy instead of pyv(s), for short.

Definition 8.2. A sheaf on a topological space X is a presheaf F satisfying in addition:

(3) For every open cover {U;};cr of an open set U C X, and a section s € F(U),

slyy=0foralliel = s=0

(4) For every open cover {U; };cr of an open set U C X, and sections s; € F(U;), if

Silu;nu; = S5|UsnU; for all 1,7€l,
then there is a section s € F(U) such that s|y, = s; for all i € I.

Definition 8.3. Let F be a presheaf on a topological space X, and let £ € X. A stalk of F at £ is

Fe= lim F(U),

EeU

where the direct limit is taken over all open neighbourhoods of £. The elements f¢ of F¢ are called
the germs of F at {. Equivalently, F¢ can be thought of as the set

{(U, f) : U open neighbourhood of ¢, f € F(U)}
modulo the equivalence relation
(U, f)~(V,9) < there is an open neighbourhood W C U NV of &, such that flw = glw .

Remark 8.4. In the same manner one defines (pre)sheaves of sets, abelian groups, or objects of any
fixed category €. The stalks are then sets, abelian groups, or objects of € respectively.
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Example 8.5.

1. The family {O(U) : U open in C"} of rings of holomorphic functions forms a sheaf (with natural
restrictions), denoted O. The stalks O, of O are isomorphic with C{z—a} (via Taylor expansion
at a).

2. Similarly, given any topological space X, the family {f : U — C|U open in X, f € C(U)} of
rings of continuous complex valued functions forms a sheaf, denoted C.

3. The family {f : U — Z| f continuous, U open in X}, where X is a topological space, forms a
sheaf called the sheaf of (locally) constant functions, denoted by Z. For every x € X, Z, = 7Z.
If v is the number of connected components of X, then Z(X) = Z*.
In general, given a ring A, equipped with the discrete topology, we define the constant sheaf A
by
A(U) ={f:U — A| f continuous} for all open U C X .

NB. The family {f : U — Z| f constant}ycsopx forms a presheaf but not a sheaf if X is not
connected.

4. Let A be a ring, X a topological space, and £ € X. A skyscraper sheaf at & is defined as

R Ty

We have (Ag), = A iff z € {€}, and (A¢), = 0 otherwise.

Definition 8.6. A morphism of presheaves o : F — G on X is a family {«(U) : F(U) = G(U) }vesopx
of ring homomorphisms, such that, for every pair of open V' C U, the following diagram is commutative

Fuy 29 gy

Ple J{p/UV

Fv) Y gy,

A morphism « is said to be an isomorphism when it has a two-sided inverse.

By the commutativity of the above diagram, « : F — G induces, for every x € X, a homomorphism
of stalks «; : F, — G,. The local nature of sheaves manifests in the following simple yet fundamental

property:

Proposition 8.7. A morphism of sheaves o : F — G is an isomorphism if and only if oy : Fo — Gu
is isomorphic for every x € X.

Proof. The “only if” being clear, suppose that «, : F, — G, is isomorphic for all x € X. To show
that « is an isomorphism, it suffices to show that a(U) : F(U) — G(U) is isomorphic for every open
U C X, because then we can define the inverse morphism 3 by 3(U) = o(U)~! for all U.
We will first show that «(U) is injective. Choose s € F(U) for which a(U).s = 0. Then, for every
rzeU,
az(8:) = (a(U).s), =0,

hence s, = 0 for z € U, by injectivity of «a,. This is to say that, for every x € U, there is a
neighbourhood U* C U such that s|y= = 0|y= = 0, and thus s = 0, by property (3) of sheaves.
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Now, for the surjectivity of a(U), let ¢t € G(U). For every x € U, there exists §° € F, for which
a;(8%) = tg, by surjectivity of . Choose representatives (U?,s”) of 3 (i.e., U* C U open, and
(s*)z = §%). Since

(@(U?).8%)x = 0x(5") = ta

then after shrinking U® if necessary, we may assume that a(U?).s* = t|y=. Then $*|gequy = $Y|v=nuv

for z,y € U, by injectivity of a proven above, because both the restrictions are sent to t|y=nyv. Now,
by property (4) of sheaves, there is a section s € F(U) such that s|y= = s* for x € U. We claim that
a(U).s = t. Indeed, for every x € U, (a(U).s)|lu= = a(U%).s* = t|y=, and hence the two sections
agree on U, by the sheaf property (3) again. O

Proposition 8.8. Given a presheaf F, there ezist a unique sheaf F™ and a morphism of presheaves
9 : F — FT, such that, for every sheaf G and a morphism v : F — G of presheaves, there is a unique

B satisfying Bo¥ = .

Proof. Uniqueness is a standard Exercise. For the proof of existence, one checks that the following
satisfies the conditions of the proposition:

FrU)={s:U— H]—'w | s(z) € F, for all z € U, and
zeU
for € U there are anbhd V C U of z and t € F(V) st. s(y) =t, for y € V}}

for all nonempty open U C X, and F+ (&) = 0. O

Remark 8.9. F' above is called the sheafification of F. It follows directly from the construction
that ]-'g = F¢ for all £ € X.

Example 8.10. The “constant sheaf” of Example 8.5.3 is the sheafification of

{f:U—A|f=const}ycqopx -

Definition 8.11. A subsheaf of a sheaf F is a sheaf F’ such that, for every open U C X, F'(U) is
a subring of F(U), and the restriction maps of F’ are induced by those of F. It follows that, for any
point £ € X, the stalk ]:E/ is a subring of Fg.

Definition 8.12. Given a morphism of sheaves a : F — G on X, we define the kernel, coker-
nel, and image of a as the sheafification of the presheaves {ker a(U)}vezopx, {coker o(U)}vesopx,
{ima(U)}uesopx respectively.

Remark 8.13.
(1) The presheaf ker v is, in fact, a sheaf (Exercise).

(2) Due to the unique factorization in the definition of sheafification, we can regard the sheaf im «
as a subsheaf of G.

Definition 8.14. e A morphism of sheaves o : F — G is called injective when ker « = 0. Equiv-
alently, by Remark 8.13(1), « is injective iff a(U) : F(U) — G(U) is so for every open U C X.

e A morphism « : F — G is called surjective when (after the identification of Remark 8.13(2))
ima =G.
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e We say that a sequence
i—1 e 70 i ol it
e — = = P —
is exact at F* when im o’ ! = ker o’.

e If 7' is a subsheaf of F, we define the quotient sheaf F/F' to be the sheafification of the presheaf
{U = FU)/FU)}vesopx-

8.2 (C-ringed spaces

Definition 8.15. A ringed space is a pair X = (| X|, Ox) consisting of a topological space | X| and a
sheaf of rings Ox on |X|, called the structure sheaf of X. It is called a locally ringed space when, for
every & € |X|, the stalk Ox ¢ is a local ring. Its maximal ideal is denoted by mx ¢. A locally ringed
space is called a C-ringed space when furthermore Ox is a sheaf of C-algebras and, for every ¢ € |X]|,
there is an isomorphism

OX7§/mX75 =C

of C-algebras.
Remark 8.16.

(1) For simplicity of notation, we will often write X instead of |X| for the underlying topological
space of (| X|, Ox).

(2) If U C X is an open subset, then U together with the restriction Oy = Ox|y is again a ringed
space.

Definition 8.17. If X is a ringed space, any sheaf F of Ox-modules is called an Ox-module or a
sheaf of modules over X. For U C X open, F(U) denotes the Ox (U)-module of sections of F over U.
If fe Ox(U) and Ox ¢ is local,

fl)=fc+mxe € Oxe/mxe
is called the value of f in &.

Definition 8.18. Given ringed spaces X and Y, a continuous mapping ¢ : |X| — |Y], and an
Ox-module F, the presheaf
TopY 2V = Fle (V)

on Y is a sheaf. We denote it by ¢, F and call it the direct image of F. It is a p,.Ox-module.
If a: F — G is a homomorphism of O x-modules, we define

©x0t P F = 0§

by (¢«a)(V) = a(p™1(V)). Then p,a is a homomorphism of ¢, x-modules.

If G is an Oy-module, we define the (topological) inverse image of G, denoted ¢~1(G), as the
sheafification of the presheaf
TopX>5U — lim G(V),
Vopen
VDoe(U)
which is thus uniquely determined by the property (¢™'G)e = Gy (¢ for all € € X. Clearly, ¢~(G) is
an ¢~ (Oy)-module.
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Definition 8.19. A morphism ¢ : X — 'Y of ringed spaces X = (|X|,0x) and Y = (]Y|,Oy) is a
pair ¢ = (||, ¢*) consisting of a continuous map

ol = 1 X] = 1Y

and a homomorphism
¢ Oy = [p[.Ox

of sheaves of rings on Y.

We think of ¢f (for £ € X) as the ring homomorphism

vt Oype) = Oxce,

defined as the composition of the canonical homomorphisms

Oype) = ([#1+Ox)pe) = Oxe.

In case X and Y are locally ringed spaces, a morphism by definition has to be local, that is, satisfy

pe(my o)) Cmxe
for every £ € X.
A morphism of C-ringed spaces X and Y is a morphism of ringed spaces, where ¢* is furthermore
a homomorphism of sheaves of C-algebras. In this case cpz is automatically local for every & € X.
We obtain the categories of ringed spaces, locally ringed spaces, and C-ringed spaces.

Lemma 8.20. Let ¢ : X — Y be a morphism of C-ringed spaces. Then ¢ is an isomorphism if and
only if || is a homeomorphism and ©¢ is an isomorphism for every § € X.

Proof. Exercise. O

8.3 Basic properties of coherent sheaves

Definition 8.21. Let X = (|X|, Ox) be a ringed space and F a sheaf of modules over X. F is called
of finite type (resp. locally free) when, for every £ € X, there is an open neighbourhood U and an
epimorphism (resp. isomorphism)
a O[I} — ]:|U .
F is called of finite presentation when, for every £ € X, there is an open neighbourhood U and an

exact sequence
l k A
OU — OU — |U — O

Remark 8.22. If a: OF — F|y is an epimorphism, define e; = (1,0,...,0),...,ex = (0,...,0,1) €
(9’[“] and fi = a(U).e1,..., fr = a(U).ex, € F(U); then fi 4,..., fr.e € Fo generate F, over Ox , for
every x € U. Hence, F is of finite type iff, for every £ € X, there exist finitely many sections f1, ..., fx
of F on some open U around ¢ such that fi ,,..., fr . generate 7, for all z € U.

Example 8.23. If X = (C,0) (where O = O¢), A={1/n:n € N*}, and F is defined by

FU)={f€OU): fluna =0},
then F is not of finite type (Exercise).
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Definition 8.24. A sheaf F is called coherent (or, more precisely, Ox -coherent) when
(i) F is of finite type, and
(ii) for every open U C X and every homomorphism OF — F|y, the kernel is of finite type.

Remark 8.25. Condition (i7) above can be, equivalently, formulated as follows:
Given finitely many sections fi,..., fr of F on some open U C X, the submodule

{1, k) € OF(V):rifilv + -+ refuly = U}Ve%pU

of O{v] is of finite type.

Remark 8.26. If X is a ringed space and F is an Ox-module of finite type, then the support of F
suppF ={x e X : F, 20} C X

is a closed set. Indeed, if U C X is open and f € F(U), then {x € X : f, =0} C U is clearly open.
For £ € X, take an open neighbourhood U and sections fi,..., fs € F(U) whose germs at x generate
Fy for all x € U. Then

suppF U = | J{w € U (1)a #0)

=1

and the assertion follows.
Lemma 8.27. Let X be a ringed space.

1. Let F be a coherent Ox-module and G C F a submodule. Then G is coherent if and only if it is
of finite type.

2. Let 0 - F' — F — F"” — 0 be an exact sequence of Ox-modules. If two of the modules are
coherent, then so is the third one.

3. If a: F — G is a homomorphism of coherent Ox-modules, then ker o and coker o are coherent
Ox-modules.

4. If F and G are coherent Ox-modules, then F x G and Homp,, (F,G) are coherent Ox-modules.
In particular, O% is Ox-coherent if Ox is so.

Proof. We will prove properties I and (most of) 2 here; the remainder of 2 (that will never be used
in this course) can be found in [Se], and the rest is an easy Exercise.

For the proof of 1, it suffices to show that, for every U € TopX, k € N, and a homomorphism
v : OF — G|u, the kernel of ~ is of finite type. But kery = ker(c o) (where ¢ : G < F) which is of
finite type, by coherence of F.

Now for 2, suppose first that modules F and F” are coherent, ad an exact sequence 0 — F' =

FAF 500 given. By part 1, it suffices to show that F' is of finite type. Let £ € X. By coherence
of F, there exists an open U around ¢ and an epimorphism « : OF — F|;. By coherence of F”, the
kernel ker (/3| o) is of finite type, and hence its surjective image ker 5|y = ~(ker(8|y o7)) is also of
finite type. This shows that F{; = ker S|y is of finite type, and so there is an open V' C U around &,
I € N, and an epimorphism O}, — F'|y, as required.

[

Finally suppose that 7’ and F are coherent, and an exact sequence 0 — F' — F B Fr L 0is
given. Then F” is of finite type, as a surjective image of a coherent F. Let then open U C X, k € N,
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and a homomorphism 7 : OF — F” be given. Write hy = y(e1),...,hy = y(ex) € F". Let £ € U.

By surjectivity of 3, there is a neighbourhood V' C U of &, and sections fi,..., fr € F(V) such that
h; = B(fi), i =1,..., k. Also, F' being of finite type, there exist (after shrinking V', if necessary)
sections g1, ..., gq € F'(V) such that the germs g1, ..., 94,2 generate F,, for every x € V.

Now, for (r1,...,7) € OF(V), we have

k k k
> rihi=0 & 0= rp(f)=B0O_rif:).
i=1 i=1 i=1

since § is a homomorphism of Oy-modules. In other words, Zf:l rih; = 0 iff Zle rifi € ker .
Hence

L k q

ZTihi =0 & 3s1,...,5€0y : Zrifi = Zsja(gj).

— i=1 Jj=1

The f1,..., fu,a(g1),. .., a(gy) being sections of a coherent F|y, the module

M = {(al,...,ak+q) €OVIW) + arfi+ -+ anfi+ arrialgn) + - + arrglgy) = O}
WeTopU

is of finite type. But the module we are looking for is just the image of M under the canonical
projection 7 : (’)’y‘q — O and hence of finite type as well. O

Corollary 8.28. Let X be a ringed space.

1. If Ox is Ox-coherent, then every Ox-module of finite presentation is Ox-coherent. (The con-
verse always holds.)

2. Let o : F — G be a morphism of coherent Ox-modules. If ag : Fe — G¢ is a monomorphism
[epimorphism, isomorphism/, then oy is so on some open neighbourhood U of €.

3. Let F,F' C G be coherent submodules. If F| C F¢ for £ € X, then F'|y C Flu on some open
neighbourhood U of €.

Proof. Exercise. O

Lemma 8.29. Let X be a ringed space, and assume Ox is Ox-coherent. If T C Ox 1is a coherent
ideal, and F is an Ox /Z-module, then F is Ox /I-coherent if and only if F is Ox-coherent. In
particular, Ox /T is Ox [I-coherent.

Proof. From the canonical exact sequence 0 - Z — Ox — Ox/Z — 0 and Lemma 8.27.2, it follows
that Ox /T is Ox-coherent. Clearly, every Ox /Z-module is of finite type with respect to Ox if and
only if it is of finite type with respect to Ox /Z.

Suppose F is Ox-coherent, and let an exact sequence

0= K= (0Ox/T)|v)k = Flu

over an open U C X be given. Then K is Ox-coherent, as the kernel of a morphism of O x-coherent
sheaves. In particular, K is of finite type with respect to Ox, hence of finite type with respect to
Ox/T.

Suppose now that F is Ox /Z-coherent and let an exact sequence
0— K — (Ox|v)* = Flu

over an open U C X be given. Moding out Z, we get again an exact sequence 0 — K/ —
(Ox/T)|v)* — Flu, hence K/T is Ox /I-coherent, as the kernel of a morphism of O /Z-coherent
sheaves. In particular, C/Z is of finite type with respect to Ox /Z, hence of finite type over Ox. Now,
7 and K/Z being of finite type with respect to Ox, so must be K, which completes the proof. O
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Finally, to conclude we list two simple yet very useful corollaries that allow the passage from local
to semi-global in coherent sheaves.

Proposition 8.30. Let Ox-modules F and G, and { € X be given. Let p : (Hom(F,G))e —
Hom(F¢, Ge) be the canonical homomorphism.

(i) If F is of finite type, then p is injective.
(i1) If F is of finite presentation, then p is an isomorphism.
Proof. Exercise (see, e.g., [Se]). O
From the above proposition and Lema 8.27.3, we get the following:

Corollary 8.31. Let F and G be coherent Ox-modules, £ € X, and let B : F¢ = G¢ be a monomor-
phism (resp. epimorphism). Then there is an open neighbourhood U of & and a monomorphism (resp.
epimorphism) o : Fly — G|y such that ag = .

Example 8.32. The above does not hold in general. Consider, e.g., the sheaf F of Example 8.23.

We have Fy = {0} 5 0y, where 0 is the zero sheaf on C, but F,, doesn’t embed into 0, for any = # 0.
From Corolary 8.31 and Proposition 8.30 again:

Corollary 8.33. Let X be a ringed space such that Ox is coherent, and let £ € X.

(1) If M is an Ox ¢-module of finite presentation, then there are an open neighbourhood U of £, and
a coherent Oy -module G, such that Ge = M.

1 1s a coherent Ox -module, an C 15 a finitely generated submodule, then there are an
If F h @) dul dM C Fe finitel d submodule, then th
open neighbourhood U of &, and a coherent Oy -submodule G C F|y, such that Ge = M.
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9 Complex analytic spaces

9.1 Oka coherence theorem

We present here the fundamental theorem of Oka asserting that the sheaf O = O¢n of holomorphic
functions in C™ is O-coherent. In fact, for the purpose of having a stronger inductive hypothesis, we
prove slightly more.

Definition 9.1. Let © C C™ be open, ¢ € N, and let f; : & — C9% be holomorphic mappings,
i=1...,p. For every open U C €, consider the submodule R/1-+/»(U) C (O(U))? defined as

RO (U) = {(er,-r6) € O+ Y eisi =0}

The family {Rfl"'fP(U)}UegopQ forms a submodule of OF,, called the sheaf of relations among f1,
U

Theorem 9.2 (Oka Coherence). Given an open  C C™ and holomorphic mappings f; : Q@ — C1
(i=1,...,p), the sheaf of relations among f1,..., fp is of finite type.

Proof. We will proceed by induction on n. If n = 0, then C" (as well as all its nonempty open
subsets) is the singleton {0}. Consequently, for any ¢ € N, the f; are constant functions, and RSt f»
is a finite-dimensional vector subspace of CP, hence trivially of finite type. The rest of the proof is
divided into two steps: First, we shall show that, for given n > 1, if the theorem holds for ¢ = 1, then
it holds for all values of ¢q. Secondly, if the theorem holds for n — 1 and all ¢, then it holds for n and
q=1.

Step 1. Induction on q. The case ¢ = 1 being assumed true, suppose that ¢ > 1 and f,..., f, are
holomorphic in some open €2 around £ = 0 in C”, with values in C4. We want to show that there is
an open V C Q around 0 and a finite number of sections of R/*~f»(V) whose germs at = generate
Rf"'f ? for every x € V (the same argument will, of course, apply to any other point of §2).

Notice that every relation ), ¢; f; = 0 is equivalent to the conjunction of relations

ZcigiEO and Zcihi =0,

where f; = (gi,hi), gi : Q@ = C47 1 h;: Q — C,i=1,...,p. By the inductive hypothesis, the module
R91-+-9r is of finite type, hence there are an open neighbourhood U of the origin, and a finite number

of p-tuples {(d{, cl d{;)}jzl from R9'9»(U), such that the germs (dJ,... ,d7). generate RItI at

every x € U. Consider now
P
kj=Y dlhi, j=1,...5s,
i=1

and the submodule RF1*s of (Op)*. As the k; are C-valued functions, we have by assumption
(¢ = 1) that RF¥1*s is of finite type. Therefore there are an open V C U around 0 and sections
{AL A D)Y_ of RE1-ks (V) such that the germs (A, ..., AL), generate R¥1-*s for every x € V.

Let (c1,...,cp) be an arbitrary section of R/t/#(Q). Since R//» is a submodule of R 9,
then, for every z € U,

S
(C1reeerCp)a= D w5, d)e = O w0 .. Y K ),
j=1 J J
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for some 7 € O,. Since RI1Fr is a submodule of R""» then

Zz,ka;”dfx iz=0in Op, forallzelU.

i=1 j=1

Hence, for all x € U, (k¥,...,x%) € RE1-k: and thus, for all z € V,

t
(KTs oo kS = D AL A anA1m---7Z77f>\i,m)~
=1 l
Therefore, for all x € V,

(1. ¢p 277 A adl L, Zn Nyl )= nr(>_ Ndi, ... Z)\ldj
l J

which is to say that the finitely many p-tuples {(Z /\gd{, . Z )\l &)}, from RS1-J» (V) generate
J

RI-I7 at every x € V, as required.

Step 2. Suppose the theorem holds for n —1 > 0 and all ¢, and let f1,..., f, € O(Q) for some
open Q C C™ around the origin. (As above, we will only prove the assertion at the origin, the proof
being exactly the same at any other point.) Without loss of generality, we may assume that none
of the f; is constant in €, and hence, by Remark 4.8, that all the germs (f1)o,..., (fp)o are regular
in 2,. Put z = (z1,...,2,-1) and w = x,,, for simplicity of notation. By Weierstrass Preparation,
after shrinking Q = U x A if necessary, we have, for each i = 1,...,p, a unique pair (P;, ¢;) such that
fi = @i P;, where q; € O(Q), ¢;(z,w) # 0 for (z,w) € Q, and P; € O(U)[w] is monic. (If f;(0) # 0, we
put P; = 1.) Now, clearly, R1/r is of finite type iff RP 1Py is of finite type, so it suffices to prove
the latter claim. Let a@ = deg Pp; we may assume that o > deg P; for all <. Let 17" denote the set of
p — 1 p-tuples (c1,...,¢p) of the form:

—P,, ¢, =P, ¢ =0 for i¢{1,p}
Co = —Pp, Cp = PQ, C; = 0 for ¢ ¢ {Q,p}

cp-1=—P,, cp=Py_1, ;=0 for i¢ {p—1p}.

Then (c1,...,c,) € RP1F2(Q) for every (c1,...,¢p) € T. For the proof of Theorem 9.2, we will need
the following auxillary proposition.

Proposition 9.3. Let P1,...,P, € O(U)[w] be monic, of degrees at most v = degP,, as above.
Then, at every point (a,b) € U x A, every germ (ci,...,Cp)ap) € Ré:'b‘jpp is a linear combination

(over Oqp)) of:
(1) germs of p- tuples of the set T, and

(2) elements of R(a b)P (Ouw])?, all of whose components are of degree at most o — 1.

Assume for the moment the above proposition. By finiteness of T, it now suffices to show that the
sheaf

{(c1,...,¢p) € RE--Po(U) N (OU)[w])P = dege; < a — 1}vesopn
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is of finite type. This however follows from the assumptions for n — 1, since every relation ), ¢;P; =0

is equivalent to
pa
Z dj Qj =0 5
j=1

where ¢;(z,w) = ¢} (2)w* ™! + -+ T 2w+ ¢ (2), Pilz,w) = PP (2)w® + -+ PP (2)w + PY(2),
do(k—1)+1 = ¢, € O(U), and the components of the Q; € (O(U))? are combinations of the P.

It thus remains to prove Proposition 9.3. Let U and P, ..., P, be as above, and let (a,b) € U x A.
Since the germ (P,)(q,p) is regular in w, from Weierstrass Preparation again, we get that

Pp — Pl 'P”

in an open V' x B(b) around (a,b), where both P, P” € O(V)[w], P"(a,b) # 0, and P(, ;) is distin-
guished in w — b.

Consider (ci,...,¢,) € RPv+Po(V x B,.(b)). After shrinking V and r if necessary, we get by
Weierstrass Division,
ci = wP' + ¢, i=1,...,p—1,

where u; € O(V x B,.(b)), and the ¢, € O(V)[w] are of degrees strictly less than deg P’. Put

c =cp+ Z P”

i<p—1

Then, modulo 7', }°, ¢;P; = 0 if and only if }°, ¢, P; = 0, and further, if and only if >,(P"¢;)P; = 0,
as P"(a,b) # 0. We claim that all the P”¢} are polynomials in w. This is clearly true for all i <p—1,
and for i = p we have

: 1 1
Ple, = Ploy+ P' Y P = g > Pt 3 b= 5 3 P

i<p—1 i<p—1 i<p—1 i<p—1

By Weierstrass Division by P’ applied to the polynomial —( Z cP;), we get
i<p—1

_ Z P =PQ+ R, where degR < degP’,

i<p—1

R
hence P"c), = Q + o This shows that the quotient R/P’ is holomorphic in a neighbourhood of

(a,b). But w = b is the only root of P’(a,-) and deg P’ > deg R, which is only possible when R = 0;
i.e., P"c, = Q is a polynomial as well.

We have thus shown that every relation (ci,...,c,) among Pi,..., P, is, in a neighbourhood
of (a,b), congruent modulo 7" to a relation (P"cy,..., P"c},) whose all components are polynomials
with respect to w. To complete the proof of the proposition, it remains to show that every p-tuple
(c1,...,¢p) € R0 (V x B.(b))NO(V)[w] is (in a neighbourhood of (a, b)) congruent modulo 7 to a
relation (cf,...,cy) among P, ..., P,, whose all components are polynomials in w of degrees strictly
less than a = deg P,,. By Weierstrass Division again, we have

Ci:ViPp—ch/, 1<i<p—-1,
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where v; € O(V)[w], and ¢ € O(V)[w] are of degrees at most & — 1. Put
cy=cp+ Z v, P .
i<p—1

Then (cy,...,¢p) is congruent modulo 7' to (cf,...,cy). All the ¢f, ..., ¢ _; are polynomials in w of
degrees at most o — 1, and as vy, ...,1,_1 are also polynomials in w, then so is ¢;. Finally, it follows

from
Py = —( Z el Py)
i<p—1

that deg(c, Pp) < 2a — 1, and hence degc;, < a — 1 (deg(c, P,) = degc) + deg P, as P, is of degree
a in w — b). This completes the proof of Proposition 9.3, and hence also of Theorem 9.2. O

Corollary 9.4. The sheaf O = Ocn of holomorphic functions is O-coherent.
By Lemma 8.27.1 and Corollary 8.28.1, we now obtain immediately the
Corollary 9.5. (a) Every sheaf of ideals T C O of finite type is coherent.
(b) Every O-module F of finite presentation is coherent.
Corollary 9.6. The intersection Iy N --- N Zg of coherent O-ideals is coherent.

Proof. Tt suffices to prove the result for s = 2. Since Z; + Z5 is of finite type (as Z; and Z, are so)
and hence, by Corollary 9.5 above, Z; 4+ Z; is coherent, so is the quotient (Z; +Z»)/Zs. Therefore also
71 NIy is coherent, by exactness of the canonical sequence

I + 1y
Iy

0—-I1NL -1, — — 0.

O

Corollary 9.7. Suppose Q € C" is open, a € 0, and functions g1, ..., gp,g € O(Q) have the following
property:

P P
f S O(V), acV C Q7 (gf)a € ZOQ,a'gi,a — fa € ZOQ,a'gi,a . (91)
i=1 i=1
Then there is an open neighbourhood U C ) of a such that, for every x € U and every function h
holomorphic in a neighbourhood of x, (gh)y € Y5 Oq 4+ gi,x tmplies hy € Y7 Oz Giz-

Proof. By Oka’s Theorem 9.2, the sheaf R9'9»9 of relations among gi,...,gp,g is of finite type,
hence there is a neighbourhood V' C 2 of a and finitely many

(s%,...,szl,,fl),...,(s({, oy 8h, f1) € RIIRI(V)

whose germs at = generate R5' 9" for all 2 € V. The property (9.1) now implies that floo fae
Zf Oq,a " Yi,a, and hence there is an open U C V around @ and functions f] € O(U) such that
=Y gionU,j=1,. 4

Therefore, if h is a function holomorphic in a neighbourhood of a point & € U satistying (gh), €
31000 giw, then (s1,...,5,,h), € R399 for some s, ..., s}, holomorphic in a neighbourhood of
z, hence h, is a combination of fl,..., f4, and hence a combination of the g; ., as required. O
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9.2 Cartan coherence theorem

Definition 9.8. Let Q C C" be open. For an analytic set A C 2, we define the (full) sheaf of ideals
of A, denoted J 4, as

JaU)={f € Oq(U) : flanv =0} for U € TopQ.

Theorem 9.9 (Cartan Coherence). If Q@ C C" is open and A C Q analytic, then the sheaf Ja is
Oq-coherent.

Proof. Let Q C C™ be open and nonempty, and let A C € be a proper analytic subset. By Corol-
lary 9.5, it suffices to show that J4 is of finite type with respect to Og. Let a be a point in (.
Without loss of generality, we may assume that a = 0 and a € A, for otherwise, by openness of Q\ A,
there is an open neighbourhood U of a in €2 for which U N A = @, and hence Ja(U) = Oq(U), as
1 € Ja(U). Next observe that we may assume A to be irreducible at a. Indeed, by Proposition 4.18,
A, = AL U---U A¢ is the union of finitely many irreducible analytic germs, hence A = A1 U ... U A®
in some neighbourhood U of a, where A7 are representatives of the respective A7, irreducible at a.
Since (Ja)e = (Jar)z NN (Jas), for all z € U, it suffices to know that the intersection of coherent
Ogq-ideals is itself coherent, which is Corollary 9.6.

Let then A be irreducible at a, of dimension k, say. By Ideal Normalization (Corollary 6.5), (Ja)a =
{fa € Oq,a: fa|la, = 0} is k-regular (after an analytic change of coordinates at a, if necessary). Hence
by the proof of Riickert Lemma 6.8, there are a system of coordinates z = (z1,...,7%) at 0 in C*, an
open connected neighbourhood V of 0 € C*, and r > 0, defining a neighbourhood U = V' x rA™~F of
the origin a € C™, with the following properties:

1° if W C U and a function f € O(W) N Ja(W) depends only on variables z, then f = 0;
2° there exists a monic irreducible polynomial F' € O(V)[w] such that
F(z,2p11) € Ja(U),
and the discriminant § = D(F) € O(V) satisfies
05 ¢ (Ja)s forallzeU (by 1°);

3° there are monic irreducible Qgya,...,Qn € O(V)[w] such that
Qiyj(z,Tp45) €JaU) forj=2,....,n—k;
4° there are polynomials Py.o,..., P, € O(V)[w] such that
0(2)Thtj — Pryj(z,0041) €JaU) forj=2,...,n—k;

5° every point b € ANU lies in the closure of a k-dimensional subvariety of U defined by equations
F(z,xp11) = 0(2)xpye — Progo(2z,2541) = ... = §(2)xy — Po(z,2641) = 0, (9.2)

for z € V'\ §71(0). Moreover, for every z € V' \ §71(0) and every root w of F(z,-), there is at
least one point in AN U whose first k + 1 coordinates are (z,w) (by (9.2)).

Let S denote a finite set of functions from O(U), including those of 2°, 3° and 4°, whose germs at a
generate the prime ideal (Ja), (in fact, it suffices to take only those of 2° and 4°, cf. Proposition ?7).
We will denote by S, the collection of germs at € U of the elements of S. We shall first prove the
following
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Lemma 9.10. There is an open neighbourhood U of the origin a € C™ with the following property: if
be U, and h is a function holomorphic in a neighbourhood of b such that (§h), € Sy for some k € N,
then hy € Sp.

Proof. Indeed, apply Corollary 9.7 with g1,..., g, the elements of S and g = 4. Then, the property
(9.1) of the Corollary is satisfied, since S, = (Ja), is prime, and 0, ¢ (Ja).. Hence, after shrinking
U if necessary, we can conclude that, for every b € U and h holomorphic in a neighbourhood of b,
(6%h), € Sy implies (6*~1h), € Sp. The result now follows by induction on k. O

To complete the proof of Theorem 9.9, it suffices to show that (J4)s is generated by the elements of
Sp for allb € U. Let then b € ANU, and let f be a function holomorphic in a neighbourhood of b, that
vanishes on A. Consider the germs Fp, (Qk+2)b;-- -, (Qn)s € S, and let z, = (b1,...,b), where b =
(b1y...,bk,...,by). Asin the proof of Proposition 9.3, since F' is monic in 21, the germ Fy, is regular
in xp4+1 —bgt1, and similarly the (Qg+;)p are regular in xp4; —bg4j, j = 2,...,n— k. Therefore, after
evaluation at z = z, the series Fy,(2p) € C{zr11}, (Qra2)p(2p) € C{zraa}, ..., (Qn)p(2zp) € C{z,} are
nonzero, and consequently, the remainder of the Hironaka division

n—k

fo=aFo+ Y ai(Qryi)s + Ro

=2

is finitely supported; i.e., Ry € Clzg41,...,Tn].

Let d = deg Ry. Then, as in the proof of Riickert Lemma 6.8, 6 R, (hence also (§¢f),) is congruent
modulo (0(2)xgt2 — Peto(2, Tk+1))b, - - -, (0(2)Xn — Pn(z, 2k+1))s € Sp to a polynomial G in xp4q with
coefficients holomorphic in a neighbourhood of z,. Now, Fj being regular in 11 — bgy1, it is an
associate of a polynomial Fé whose germ at b is distinguished in x;41 — bg41. Hence Fé € Sy, and we
can divide (in Ok[xg+1 — brt1]):

(6% )y = qF] + Hy, where H € O(W)[xy11] and deg H < deg F’

for some open W around z;.

Observe that, since f vanishes on ANU’ for some open U’ = b+rA™ around b, and (6~1(0) x C"~*)N
ANU’ is nowhere dense in ANU’ (Proposition 7.6), then, for z in an open dense set (2, +7A%)\§71(0),
H(z,-) vanishes whenever F’(z,-) = 0, that is, at every root of F’'(z,-), by 5°. As deg H < deg F’,
it follows that H = 0; i.e., (09f)y € Sp. Therefore, by Lemma 9.10, f, € Sy, which completes the
proof. O

9.3 Complex analytic spaces - first properties

Lemma 9.11. Let Q2 C C" be an open subset, and assume that L is a coherent sheaf of Oq-ideals.
Then

supp(Oq/Z) ={z € Q: (0q/I), # 0}
is an analytic subset of ).
Proof. For £ € Q, take an open neighbourhood U C 2 such that there exist f1,..., fs € Z(U), whose
germs at x generate Z, for every x € U (by coherence). Then, for 2 € U, we have
z €supp(0q/T) <= (0q/I)y #0 <= I, # Oq, < I, Cmq,
< f17wa---7fs7w S mo,z — fl(m) == fs(x) =0.

Thus every ¢ € Q admits an open neighbourhood U such that supp(Oq/Z) N U is defined by finitely
many functions analytic on U, which proves the assertion. O
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For a sheaf of ideals Z C Ox, by the radical of Z, denoted radZ, we understand the sheafification
of the presheaf {rad(Z(U))}vezopx-

Corollary 9.12. IfQ C C" is open and T C Ogq is a coherent sheaf of ideals, then the sheaf radZ is
coherent.

Proof. By the above lemma, A = supp(QOq/Z) is an analytic subset of Q. Hence, by Nullstellen-
satz (Theorem 6.6), (radZ), = (Ja). for all z € Q, so radZ = J 4 is coherent, by Cartan’s Coherence
Theorem. O

Definition 9.13. Let 2 C C™ be open, and assume a coherent ideal Z C Ogq is given. Then
A = supp(Oq/7) is an analytic subset of Q, and (4, (Oq/Z)|4) is a C-ringed space, which we call a
local model.

A complex analytic space is a C-ringed space X = (| X|, Ox) satisfying the following conditions:

(a) |X| is Hausdorff

(b) For every £ € X, there is an open neighbourhood U of £ such that (U, Ox|y) is isomorphic (as
C-ringed space) to some local model.

If X = (]X|,0x) and Y = (]Y], Oy) are complex analytic spaces, then any morphism

o= (lel, ¢") : (|1X],0x) = ([Y],Oy)

of C-ringed spaces is called an analytic map (or holomorphic map).

A complex analytic space Y is called an open complex analytic subspace of X, if |Y] is an open
subset of | X|, and Oy = Oxly.
Y is called a closed complex analytic subspace of X, if there is a coherent ideal Z C Ox such that

Y| =supp(Ox/Z) and Oy =(0x/I)ly .

In this case, there is a canonical analytic map determined by the injection, which we denote ¥ — X.
A subset A of a complex analytic space X is called analytic when there is a coherent ideal Z C Ox
such that

A =supp(Ox/TI).

(Note that, if X is a manifold, then the above agrees with a standard definition of analytic set -
Exercise!)

Finally, a space X is called non-singular (or smooth) at £ € X, if there is an open neighbourhood U
of £ such that (U, Ox|y) is isomorphic to some local model of the form (€2, Ogq), where Q C C™ is an
open subset. Otherwise X is singular at £, and £ is its singular point.

Example 9.14. Denote by z the coordinate function in C, and let Z,, C O¢ be the sheaf of ideals
generated by 2" (n € Ny). Then supp(Oc/Z,) = {0}, and (Oc/Z,)|{0y = C" is an n-dimensional
C-vector space. The space ({0}, C") is called an n-fold point; for n > 1 it is singular.

As a consequence of Oka Coherence we obtain (Exercise) the fundamental:

Theorem 9.15. The structure sheaf Ox of every complex analytic space X is coherent.
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Theorem 9.16. If A is an analytic subset of an analytic space X, then the singular locus sngA forms
an analytic subset of A. In particular, sngX is analytic.

Proof. The problem being local, we may assume that X is a local model, and furthermore, that X is
smooth (as analytic subsets of analytic sets are analytic). Let then X = (Q, Oq), where Q C C™ open,
and let A be an analytic subset of X. Then, by Theorem 9.9, the sheaf of ideals J4 is Ogq-coherent.
For a point £ € A, let U be an open neighbourhood of £ in Q, and let hy,...,hs € Oq(U) be such
that the germs hi s, ..., s, generate J4 , for every x € U.

Suppose first that A is irreducible at £, of dimension k; then regANU is a k-dimensional submanifold
of U (possibly after shrinking U). Let Dy, (x) be the determinant with rows and columns

>\:(>\17"-7)\n—k); p’:(lu’lw-'a/u'n—k)7

Oh;
respectively, from the matrix [ : (x)} L where © € U. Then each D, is holomorphic on U,
.’Ej 1=1,...,s
j=1,...,n
and we claim that
resngANU & ze€ ﬂD;}}(O).
Ap

First, suppose z € (ANU) \ sngdA. Then z lies on a k-dimensional manifold regA N U, hence

there are a small open neighbourhood V' C U of z and holomorphic fi,..., fn—r € O(V) such that
afi

rk [&f (m)} =n —k, and all f; vanish on ANV =regANV. But then fi 4, ..., fn—k. are generated by
J

the hi gz, ..., hs s, and hence some Dy, must be non-zero at x (for otherwise rk [0f;/0x;(z)] < n—k).

Suppose now that € ANU and Dy,(x) # 0 for some A, u. Then the differentials dhy, (z),. ..,

dhy, _, (x) are linearly independent, and hence the set Z = ﬂ:zlk h;il (0) is a k-dimensional submani-

fold of a neighbourhood V of z in U. But ANV C Z is a k-dimensional analytic subset of Z, hence
ANV = Z, by irreducibility of Z, (Prop. 7.6). Therefore ANV C regA, and thus z € A\ sngA, as
required.

Now, for an arbitrary A, let A = Aé U---u Ag be the decomposition into irreducible germs, and
let U be an open neighbourhood of £ for which

ANU=A'U---U A9,

where the A7 are representatives in U of the respective Ag. Then the result follows from the first part
of the proof and the formula (7.2). O

9.4 Nilradical and reduction

Definition 9.17. Given a complex analytic space X, the nilradical of X is the sheaf Nx of ideals
associated to the presheaf

{feOx(U): f*=0 for some k € N}Ueiaple .

Then, for every £ € | X/, we have Nx ¢ = rad(0).
Let Cx denote the sheaf of continuous complex-valued functions on |X|. For every open U C |X],
there is a canonical ring homomorphism

Ox(U) > f = feCx(U),
where f(€) = f(£) (€ Ox¢/mx¢ = C) for & € U, and this defines a sheaf morphism Ox — Cyx.
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Theorem 9.18. Let (X,Ox) be a complex analytic space. Then
(i) the nilradical Nx is a coherent Ox-ideal
(ZZ) NX = ker{OX — Cx} .

Proof. The question being local, we may assume that X is a local model (A, (Oq/Z)|4). Then, by
Nullstellensatz,
Nx = ((radZ)/T)[a = (34/T)|a,

because this is so for stalks at every point of 2. Hence Cartan’s Coherence together with Lemma 8.29
imply (i). To prove (i1), it suffices to show that N'x ¢ = ker(Ox,¢ — Cx¢) for all { € X. Take £ € | X|,
and fe = F¢ +Z¢ € (Oq/T)¢, where Fe € Oq¢. Then

(f)gzo =4 Fg 63,4’,5 = ngJA’g/Ig ZNX’E.

We note another simple consequence of Nullstellensatz and coherence:

Proposition 9.19. Let X be a complex analytic space, and let Z, J C Ox be coherent ideals. If
supp(Ox /Z) C supp(Ox/T),

then, for every relatively compact open U C |X|, there is an integer k € N such that J*|y C I|y.
In particular, for every relatively compact open U C |X|, there exists k € N such that

N¥y = (0).
Proof. Since supp(Ox /Z) = supp(Ox /radZ), and (by Nullstellensatz)
supp(Ox /radZ) C supp(Ox /radJ) < radJ C radZ,

it suffices to show that, for every coherent Z C Ox and relatively compact U, (radZ)*|y C Z|y for
some k € N. By noetherianity of Ox ¢, for every ¢ € U, we have ((radZ)¢)*s C Z¢ for some ke € N,
hence (radZ)¢|ye C Z|ye on some open V& C U around ¢ (Corollary 8.31). Choosing k = max k¢
over the finitely many points such that the corresponding V¢ cover U, we get (radZ)*|y C Z|y, as
required.

The second assertion now follows from equality supp(Ox /Nx) = supp(Ox/(0)). O

Let X = (|X|,Ox) be a complex analytic space, and consider the ideal sheaf Nx on X. As
Ox /mx ¢ = C, for every & € |X|, then Nx ¢ # Ox ¢, hence, in particular, supp(Ox /Nx) = | X]|.
Definition 9.20. The closed complex analytic subspace of X

Xiea = (|X],0x/Nx)
is called the reduction of X. The space X is called reduced when X = Xyeq (i-e., when Nx = 0).

We now want to show that every analytic mapping ¢ : X — Y of complex analytic spaces induces
a canonical analytic morphism
©Ored : Xred = Yred

of their reductions. This will follow from a more general lemma below.
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Lemma 9.21. Let ¢ : X — Y be an analytic map, and assume closed complex analytic subspaces
X' S X andY' S Y are defined by ideals T C Ox and J C Oy respectively. Then there exists a
(unique) analytic map ¢’ : X' =Y’ satisfying p o =ro ¢’ if and only if ©*(J) C |p|+Z.

Note that if X’ € X and Y/ C Y are open analytic subspaces, then the existence of the restriction
¢ X’ = Y’ is equivalent to the condition

lel(1X7]) < Y]

for the underlying topological spaces (Exercise). In the case of closed subspaces this condition is, of
course, necessary, but in general, by no means sufficient.

Proof. Consider the following commutative diagram:

0 0

! !

J ol

1 1

oy = | Ox

1 1

6.0y = Oy/T ——= |o[(Ox/I) =lol|e|sOx .
1 2
0 0
If ' exists, we may define a := |k|.(¢’)*, making the diagram commute. In particular,

plst" 0 @™(T) = acr™(J) = a(0) =0

implies p*J C ker|¢|.t* = |¢|Z.

Conversely, assume ¢*J C |o|,Z. We first show that |¢|(|]X’|) C |Y’|. Indeed, if £ € suppOx/Z,
that is, Ze C mx¢, then Jj, ¢ C my |4.¢, s0 |@[.§ € suppOy/J. We may thus define |¢'| as the
restriction of |p] to | X[; i.e.,

@'l = |s|™ o fpl o]l

Our assumption implies the existence of o making the diagram commute, and hence we may define
()" =8l e Oyr = []7H Oy /T) = |7 (el (Ox/T)).
It remains to show that |k| (||« (Ox/I)) = |¢'|«Ox-. And, indeed, by commutativity of the diagram
and the properties of the “extension by zero” morphisms |¢|. and |k|., we get
|0 Oxr = 6] KLl | Oxr = |kl |]e| T (Ox /T)
= |k kel o 7 (Ox/T) = |k el (Ox /T) -

O

Corollary 9.22. If ¢ : X — Y is an analytic map, then there is a uniquely determined analytic
mapping
Pred - Xred — )/red

such that ¢ ot = K 0 Yreq, where 1+ Xpeq — X and K : Yieq — Y are the canonical embeddings.

Proof. Clearly, p*Ny C |p|.Nx, as locally, (p*Ny)¥ = p*(NE) =0 for some k € N. O
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Example 9.23. 1. Let X = C2 with the coordinate functions x,y, let ¥ = C with coordinate z,
and put ¢ : X 3 (z,y) = x+y € Y. Then ¢*(z) = z +y. Now, let X’ be the closed subspace
of X defined by Z = (22,y?), and ley Y’ be the subspace of Y defined by J = (z?). Since
©*(22) = (¢*(2))? = 22+ 22y +172, it follows that ¢*J ¢ |¢|.Z, and hence there is no restriction
o X' =Y of o

2. Let, in turn, X be the analytic subspace of C? defined by Z = (22,9?), let Y be the subspace
of C defined by J = (2?), and let ¢ : X — Y be given by |¢[(0) = 0 and ¢*(2) = 2% + y2.
Then Nx = radZ = (z,y), Ny = radJ = (z), so that X,eq is a simple point, with Ox,_, =
(Oc2/(2,Y))| X,eq» Yred is a simple point, with Oy, , = (Oc/(2))|v,es, and ¢4 = idc. On the
other hand, ¢*(2?) = (p*(2))? = 2* + 22%y* + y*, s0 * T C |¢|.Z, and thus ¢ : X — Y itself is
a restriction of ® : C? 3 (z,y) — 2% +y? € C.

We will now show that the continuous mapping |¢| : |X| — |Y]| of the underlying topological
spaces is determined by the sheaf morphism ¢*. Conversely, the sheaf morphism ¢* component of an
analytic map ¢ : X — Y is uniquely determined by |¢|, provided X = X,oq. We begin with a simple
observation:

Lemma 9.24. Let (R,m) be a local analytic C-algebra, and let r1,...,r, € m be given. Then there
exists a unique homomorphism ® : C{z1,...,2,} = R of local analytic C-algebras satisfying ®(z;) =
Tj,jZL...,’rl.

Let X = (|X],Ox) be a complex analytic space. For n € N, we will denote by Hol(X,C™) the set
of analytic mappings X — C”, and by z1,..., 2, € Oc»(C") the coordinate functions on C”.

Proposition 9.25. If X is a complex analytic space and U C |X| an open subset, then the map
Hol(U,C") 3 ¢ — (¢*z1,...9%2,) € (Ox(U))"

1s bijective.

Proof. For the proof of injectivity, let ¢, 9 € Hol(X,C™) be such that ¢p*z; = ¢*z; for j =1,...,n.

For a point £ € | X/, let cé € Ocn (C™) (resp. dg € Ocn(C™)) be the constant section z — z;(|¢[(&)) € C
(resp. z +— z;(|¢|(€)) € C). Then

(z)1o1te) — (CE)ipl(6) € Mo jpi(e) s hence  @g[(25)1p16)] — El(ch)ipie)] € Mx e,
and consequently
(P zj)e +mx e = 0El(2))1010)] T mxe = 2i(l@l(€)) -

Similarly,

i) = (@) i) € men i) > hence  YE[(z) i) — YEIAD) w1 € mx.e,
and consequently
(V" zj)e + mxe = Ve(2))101)] + mxe = 2 ([¥[(E)) -
Thus
zi(lol(€)) = (¢*zj)e + mx e = (W 25)e + mxe = 2 (|¥[(€), j=1,...,n,

hence |¢|(&) = |¥|(€). As £ was arbitrary, it follows that |p| = |¢].
On the other hand, for j =1,...,n,

Pe(25) = (¥"25)e = (W7 25)e = Vi (25) s
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hence, by Lemma 9.24, ¢ = ¢f. As € was arbitrary, we get ¢* = ™.

Suppose now that (fi,..., fn) € (Ox(U))™ are given. We may assume that U is a local model in
2 C C™, generated by a coherent ideal Z, and the f; € Ox(U) = (Oq/Z) |y are induced by some
Fi,...,F, € Oq(9) (after shrinking € if necessary). Consider the analytic map

F=(F,...,F,):Q—>C",

and its restriction ¢ = F|y : U — C". Then ¢*z; = f; for j = 1,...,n, which completes the
proof. 0

Corollary 9.26. Let X = (|X|,0x) be a complex analytic space. The following conditions are
equivalent:

(i) X is reduced.

(i) For any open U C |X|, complex analytic space Y, and analytic maps ¢, : U =Y, the equality
ol =[] implies ¢ = .

Proof. (i) = (ii): The question being local, we may assume that ¥ = C". Then, by the above
Proposition 9.25, ¢ : U — C" (resp. ¢ : U — C") is uniquely determined by the n-tuple of global
sections (¢*z1,...,9%z,) € (Ox(U))™ (vesp. (¢*z1,...,0*z,) € (Ox(U))™), which, in turn, can
be identified with their evaluations, that is, images under the now injective (Theorem 9.18) sheaf
morphism Ox — Cx, namely (21 0|¢|,...,2,0|p]) and (z1 0 |9)],..., 2z, o [t)]) respectively; the latter
being equal, by assumption.

(#3) = (4): If X is not reduced, there exists an open U C |X]|, and a nilpotent f € Ox(U), hence an
analytic map f: U — C which is not zero whilst |f| = 0. O

Example 9.27. The following are two distinct morphisms of a double point to itself: Define ¢* to
send 1+ 1 and 2z + z, and ¥* to send 1+ 1 and z ~ 22. Then (|¢|, ¢*) # (|2],¥*).

9.5 Germs of complex analytic spaces - duality

Definition 9.28. If X = (| X|, Ox) is a complex analytic space, and £ € | X|, the pair (X, ) is called
a germ of a complex analytic space X at £&. A morphism of germs (X,€) — (Y,n) is a germ of an
analytic map X — Y. For an open U C |X|, a point £ € U, and analytic ¢ : U = Y with p(§) =,
we denote the induced germ by ¢¢ : (X, &) — (Y, 7).

The assignment
(X,8) = Oxe

becomes a contravariant functor from the category of germs of complex analytic spaces to the category
of local analytic C-algebras in the following way: If a morphism ¢ : (X, &) — (Y, n) is represented by
an analytic map ¢ : U — Y, where U is an open neighbourhood of £ in | X]|, then

pr: Ovy = Oxe

is the homomorphism of local rings induced by . The following result will be fundamental for our
study of the local geometry of analytic mappings.

Proposition 9.29. The functor defined above is an antiequivalence. That is:

(i) If pe e+ (X, ) = (Y,n) are two morphisms of germs, then @i = ¢f implies pe = t¢.
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(1t) If R is any local analytic C-algebra, then there exists a germ (X, §) and an isomorphism Ox ¢ —
R of local analytic C-algebras.

(iii) If 0 : R — S is a homomorphism of local analytic C-algebras, then there is a morphism
pe 1 (X, &) = (Y.n) of germs of analytic spaces, such that 0 = ¢f.

Proof. (i): Take an open neighbourhood U C |X| of &, and analytic maps ¢, : U — Y representing
¢ and )¢ respectively. The question being local, we may assume that Y is a local model, and further,
that Y = C™ with n = 0. By Proposition 9.25, we may identify

p=(p"21,...,¢"2) € (Ox(U))" and ¢ = (P"21,...,¢9"2) € (Ox(U))". (9:3)
The equality ¢f = 97 : C{z1,...,2n} = Ox ¢ implies, for j =1,...,n,
(" 2j)e = pe(25) = e (25) = (W7 25)e,
hence
Oz =0 2,0 2 = 2,

after shrinking U if necessary. By (9.3), p¢ = t¢.

(#4): Write R = C{wy,...,wm}/a, where a = (f1,..., fr). By coherence, there is an open neigh-
bourhood W C C™ of £ = 0 € C™, and holomorphic Fi, ..., F. € Oy (W) representing the fi,..., f.
Denote by Z C Oy the sheaf of ideals generated by Fi, ..., F, (Corollary 8.33), and by X — W the
corresponding closed analytic subspace. Then

Oxe=(0x)e = ((’)W/I)€ = (Ow)e/Ze = C{wn,...,wp}/a=R.

(273): Let 6 : R — S be given. By (ii), we may write 6 : Oy,, = Ox ¢, for some analytic spaces
X and Y. We may assume that Y — W C C” is a local model, with n = 0, and consider the
commutative diagram

+— a2 <+ o

(C{wl,...,wn}
©
Ve
0

(_

Ox ¢ @)

n

O+ X

where a € C{w1,...,w,} is the ideal defining Oy, and © (the diagonal arrow in the traingle of
the diagram) is defined by means of Lemma 9.24. By Proposition 9.25, there is an open neighbourhood
U C |X] of £, and an analytic map ® : U — C", such that |®|({) = 0 and &; = ©. Since ®{(a) =
O(a) = 0, we may apply Lemma 9.21, and (after shrinking U, perhaps) obtain an analytic map
¢ : U =Y satisfying p; = 0. O
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The duality stated in Proposition 9.29 allows to derive local geometric properties of complex
analytic spaces and analytic mappings from algebraic considerations on the local analytic C-algebras.
We complete this section with two immediate consequences.

Corollary 9.30. For a complex analytic space X = (|X|,O0x) and a point & € |X|, the following
conditions are equivalent:

(i) X is smooth at €.
(11) The local ring Ox ¢ is regular.
Proof. (i) = (i4) is clear. If, in turn, the local ring Ox ¢ is regular, then there is an isomorphism
C{z1,...,2n} = Ox¢

for some n € N, which by Proposition 9.29(ii%), yields an isomorphism of complex analytic spaces
@ : U — W, where U is an open neighbourhood of £ in X, and W an open neighbourhood of zero in
Cn. D

Corollary 9.31. Let V. C C™ and W C C" be open, let X SV andY < W be closed analytic
subspaces, and let ¢ : X — Y be an analytic mapping. Then, for every & € X, there exists an open
neighbourhood V' of £ in 'V, and an analytic map ® : V! — W, such that ®o (t|xny/) = ko (¢lxnv’) .

Proof. We may assume that £ =0 € C™ and ¢(£) = 0 € C", and consider the diagram

0 0
+ +
a b
+ +
(C{wh 7wm} <_E_ (C{Zla 7Zn}

P / lo

Oxpo & Oy
+ +
0 0

where p,o are the canonical homomorphisms, and « := ¢§ o 0. Define f; = a(z;) € Ox for

j=1,...,n, and choose Fi,...,F, € C{wi,...,wy} such that f; = p(F;). By Lemma 9.24, there is
a homomorphism

0:C{z1,...,2n} = Cl{wr,...,wn}

with 6(z;) = Fj. Then, by Proposition 9.29(7i¢), there are an open neighbourhood V' C V of 0 € C™
and an analytic ® : V' — C", such that ®§ = 6. Since 6 induces ¢, it follows that ¢ is a restriction
of ®. O

Remark 9.32. In the second part of these notes, we will use notation X, for a germ (X, &) of an
analytic space X at a point £ € |X| (i.e., the same notation as was used for an analytic set germ). It
will be always clear from the context whether we mean X, as a germ of an analytic space or as an
analytic set germ. In any case, if X is reduced at &, then there is no difference.



